Lamar Projects 2022

  • Maximum Resiliency Identification for the General Refinery Supply Chain under Multi-disaster Impacts in the Gulf Coast Region

    Investigators: Sujing Wang (Lead)

    Applicant: Qiang Xu


     A general refinery supply chain (GRSC) centers multi oil-product manufacturing at refinery plants, bridges volatile crude-supply and oil-product markets, and involves huge inventory management of various raw materials, intermediates, and finished products, as well as connecting multiple transportation systems including waterways, railways, roads, and pipelines. The GRSC operations consist of crude purchasing, vessel shipping, unloading, and storage at port-side tank farms, inland pipeline transportation, crude blending and discharging at refinery tank farms, refinery manufacturing, oil product bulk storage, as well as the primary and secondary oil-product distribution. The optimization of the entire GRSC is critically important for the profitability and sustainability of the oil and gas industry. However, it should be noted that the GRSC system is also susceptible to risks from various disruptions, especially threats of multi-natural disasters and unpredictable accidents, which bear low likelihood but have significant economic, environmental, and/or public health consequences. To improve the resilience of a GRSC system, an urgent need is to identify the general effective indexes that could be utilized to quantify and compare the maximum resilience capability of a GRSC under different disruption impacts.

    In this project, three resilience indexes will be respectively developed to characterize the maximum resilience capability of a GRSC: a quantity-based resilience index (QRIn), a property-based resilience index (PRIn), and the minimum selection of QRIn and PRIn, i.e., the combined residence index (CRIn). From different viewpoints, the QRIn, Prink, and CRIn will provide the maximum time durations during which a GRSC can at least sustain its minimum safe load operation under disruption impacts caused by multi-natural disasters or accidents. Certainly, such the minimum safe load operation of a GRSC should satisfy various constraints, such as required process continuous or batch operation modes, process safety limitation (e.g., the upper and lower bounds of a tank inventory), product quality specifications (e.g., the sulfur content of gasoline products), material and energy balances, and GRSC boundary conditions (e.g., no crude input due to crude vessel shipping delay). Thus, the maximum resilience obtained for a GRSC means that the GRSC can utilize its inherent potential to sustain the maximum run length via the best solution of its optimal scheduling and control for the refinery manufacturing process, front-end and back-end transportation systems, and GRSC-wide inventory management. Based on our previous research accumulations, this project will develop: (i) a resilience characterized mathematical model for a full-scale GRSC system covering crude purchasing, shipping, unloading, storage, pipeline transportation, blending and discharging, refinery manufacturing, and multi oil-product inventory management and distribution; (ii) three quantitative resilience indexes of QRIn , PRIn, and CRIn that will be used as the objective function of the mathematical model, and (iii) an effective solving method to identify optimal solutions for the maximum GRSC resilience. The project development will help oil and gas companies in Gulf Coast Region and beyond to identify the inherent resilience capability of their refinery supply chains, as well as help them prepare and deal with threats of multi-natural disasters and unpredictable accidents in proactive and cost-effective ways.

     

  • Recovery and Resilience Academy (RRA)

    Investigators: Margot Gage

    Applicant: Chang, Chiung-Fang


    The Resilience and Recovery Academy (RnR) will focus on education, community outreach, and research that is geared towards assisting the local community as well as Lamar University students during the pandemic and/or a natural disaster. This work will be done using a multi-disciplinary collaborative approach that expands research, education, and student involvement while also partnering with different academic programs at Lamar University (e.g., Social Work, Civil Engineering, Nursing, and Public Health) and non-academic agencies to address all aspects of resiliency in Southeast Texas. This project aims to support the initiation and development of the RRA to expand existing efforts already taking place by:


    Providing free and practical education and awareness programs of interest to the community. Including topics on invisible illness, campus violence, residential housing, and emergency drill training.
    Bringing scholars and professionals from local, state, and the nation to provide diverse educational experiences to the SETX community.
    Providing virtual and on-site activities to fill the diverse needs of the SETX community.
    Developing the RRA webpage to provide online resources and information for the community.
    Developing field research involving students to assess the outcome of effectiveness for the academy program. The pre- and post-tests will be assessed for each event and program delivery. Additionally, focus group and interview survey methodology will be conducted to assess community needs and development.
    Initiating a “Drill Training Workshop” to form an emergency educational resource for the SETX community.
    Presenting the research outcome at professional conference meetings and submitting findings for future publications.

  • Enhancing Ubiquitous Water Monitoring Infrastructure Resiliency with IoT-based Wireless Sensor Networks and Deep Learning Neural Networks

    Investigator: Jing Zhang , Thinesh Selvaratnam ,Qin Qian , Frank Sun 

    Applicant: Bo Sun

     The goal of this project is to enhance ubiquitous water monitoring infrastructure resiliency using IoT-based Wireless Sensor Networks and deep learning-based on neural networks. As an interdisciplinary project, this infrastructure will enable a wide variety of related projects through ubiquitous data collection, analysis, modeling, and prediction. We will focus on real-time measurements including Temperature, Dissolved Oxygen, Water Depth, Flow Rate, pH Value, and Turbidity, to provide real-time water quantity and quality information. The model could be used to study comprehensive water dynamics and help communities to assess their exposure to flooding risk based on verified measurement data, and to provide an opportunity to assist water resource management decision-making.

    Specifically, 1) More hourly streamflow and water quality data will be collected using a wireless sensor network based on STORM 3 and water quality probes; 2) The feasibility of an open-source IoT-based WSN will be investigated. If successful, this will provide great flexibility to customize research needs and have a dramatic impact on education; 3) State-of-the-art artificial intelligence methods will be applied to create a deep learning-based model to analyze the collected multiple-dimensional time series data. Several deep learning-based networks have been successfully applied for time series analysis, including Recurrent Neural Network (RNN), stacked encoder/decoder, temporal convolution, and Long Short Term Memory (LSTM); 4) A secure and multithreaded web server will be designed and implemented to facilitate remote access of data; 5) We will periodically visit and assess the sites, revise the optimal configuration for the deployed WSNs.

    This proposed interdisciplinary project will have a significant impact on computer science and water resource resiliency research. It will 1) Derive understanding of complex interactions among water resources, global climate change, and human impacts from data inference; 2) Utilize research results to provide effective and economic solutions for sustainable water resource management; 3) Establish an excellent environment to broaden students' knowledge and research experience, and encourage the participation of underrepresented minorities/women; 4) Integrate research results into undergraduate and graduate curricula in computer science, water resource education, and environmental engineering.

    Local high school students will have an opportunity to visit the constructed infrastructure and experience the cutting-edge technology and its impact on society. The related outreach program will attract and encourage more K-12 students from local high schools to study science, technology, engineering, and mathematics (STEM).

  • Promoting Resiliency in Rural Schools and Communities through Distance Education Programming, Resources, and Opportunity

    Investigators: Ashley Dockens (adockens@lamar.edu), LeAnne Chisholm (chisholmlj@lamar.edu), Troy Palmer (tpalmer3@lamar.edu), Dwayne Harapnuik (dharapnuik@lamar.edu)

    Applicant: Tilisa Thibodeaux


    Educational Resources

    The proposed Supporting Resiliency in Rural Health Through Telehealth, Telemedicine, and Distance Education project will increase the capacity for resiliency in rural healthcare, health promotion, disease prevention, and interprofessional healthcare education. Technology promoted resilience in healthcare and education during the COVID-19 pandemic; however, infrastructure is expensive and not easily attainable for many rural communities. This project supports and extends a larger USDA Grant, LU Interprofessional Rural Health Literacy and Chronic Care CONNECT Through Distance Education and Telemedicine Project. The CONNECT grant will provide a substantial portion of the equipment needed to start a resilient network and connection with larger cities and entities such as Lamar University. The CONNECT Project establishes a network between Lamar University interprofessional teams, Fairmount Family Practice, Sabine Area Career Center, and the West Sabine Independent School District by providing state of the art telemedicine and distance education equipment.

    However, the Supporting Resiliency in Rural Health Through Telehealth, Telemedicine, and Distance Education project not only supports the larger CONNECT project by purchasing telemedicine software needed for the telemedicine equipment, creating policy, and protocols, but also extends interdisciplinary educational programming, and connecting larger numbers of interprofessional groups at Lamar University with the rural Sabine County community. The established network will provide rural healthcare providers access to technology, experts in interprofessional fields, distance education, as well as practicum activities for Lamar University health professions students in rural communities, bolstering their interprofessional service-learning experiences needed for success in high impact educational practices, accreditation requirements, and growth in marketable skills.

    When the COVID-19 pandemic hit, every profession across the world was forced to quickly adapt, learn technology, and develop minimal contact and low risk strategies to continue to conduct business. Healthcare was particularly affected and had to increase the utilization of telehealth via video streaming while healthcare education conducted didactic classes online and moved to simulated healthcare scenarios in their laboratory work. However, actual patient contact is needed to obtain a true and accurate assessment for patients and to improve healthcare student knowledge for professional growth. Understandably, fragile, and vulnerable populations were hesitant to enter hospitals or doctors' offices where exposure to COVID-19 may occur. The utilization of telemedicine equipment in the home provides actual assessment data, safely connects patients with providers, and minimizes health risks. Likewise, students participating in telemedicine can obtain actual experiences with real patients and learn the evidence-based best applications for technology.

    This project provides equipment and related resources for telehealth offerings, networks with rural communities for provision of healthcare, establishments for digital education and training, and distance education programming in healthcare and prevention. Once these networks are established, they will be sustainable, increase healthcare access for vulnerable patients during adverse situations, and provide additional practicum opportunities for healthcare profession students at Lamar University. Overall long-term goals are to promote rural resiliency and a healthier and more productive rural community that is networked with resources and expertise from Lamar University and beyond.

  • Supporting Resiliency in Rural Health Through Telehealth, Telemedicine, and Distance Education

    Investigators: Tilisa Thibodeaux (tthibodeaux7@lamar.edu), LeAnn Chisholm (chisholmlj@lamar.edu), Lilian Felipe (lfelipe@lamar.edu), Troy Palmer (tpalmer3@lamar.edu),

    Applicant: Ashley Dockens


    Community Resources

    The proposed Supporting Resiliency in Rural Health Through Telehealth, Telemedicine, and Distance Education project will increase the capacity for resiliency in rural healthcare, health promotion, disease prevention, and interprofessional healthcare education. Technology promoted resilience in healthcare and education during the COVID-19 pandemic; however, infrastructure is expensive and not easily attainable for many rural communities. This project supports and extends a larger USDA Grant, LU Interprofessional Rural Health Literacy and Chronic Care CONNECT Through Distance Education and Telemedicine Project. The CONNECT grant will provide a substantial portion of the equipment needed to start a resilient network and connection with larger cities and entities such as Lamar University. The CONNECT Project establishes a network between Lamar University interprofessional teams, Fairmount Family Practice, Sabine Area Career Center, and the West Sabine Independent School District by providing state of the art telemedicine and distance education equipment.

    However, the Supporting Resiliency in Rural Health Through Telehealth, Telemedicine, and Distance Education project not only supports the larger CONNECT project by purchasing telemedicine software needed for the telemedicine equipment, creating policy, and protocols, but also extends interdisciplinary educational programming, and connecting larger numbers of interprofessional groups at Lamar University with the rural Sabine County community. The established network will provide rural healthcare providers access to technology, experts in interprofessional fields, distance education, as well as practicum activities for Lamar University health professions students in rural communities, bolstering their interprofessional service-learning experiences needed for success in high impact educational practices, accreditation requirements, and growth in marketable skills.

    When the COVID-19 pandemic hit, every profession across the world was forced to quickly adapt, learn technology, and develop minimal contact and low risk strategies to continue to conduct business. Healthcare was particularly affected and had to increase the utilization of telehealth via video streaming while healthcare education conducted didactic classes online and moved to simulated healthcare scenarios in their laboratory work. However, actual patient contact is needed to obtain a true and accurate assessment for patients and to improve healthcare student knowledge for professional growth. Understandably, fragile, and vulnerable populations were hesitant to enter hospitals or doctors' offices where exposure to COVID-19 may occur. The utilization of telemedicine equipment in the home provides actual assessment data, safely connects patients with providers, and minimizes health risks. Likewise, students participating in telemedicine can obtain actual experiences with real patients and learn the evidence-based best applications for technology.

    This project provides equipment and related resources for telehealth offerings, networks with rural communities for provision of healthcare, establishments for digital education and training, and distance education programming in healthcare and prevention. Once these networks are established, they will be sustainable, increase healthcare access for vulnerable patients during adverse situations, and provide additional practicum opportunities for healthcare profession students at Lamar University. Overall long-term goals are to promote rural resiliency and a healthier and more productive rural community that is networked with resources and expertise from Lamar University and beyond.

  • CRISys - Community Resilience Indicator System: Developing a Community Resilience Framework in Response to Natural Disasters

    Investigators: Thinesh Selvaratnam (tselvaratnam@lamar.edu), Ginger Gummelt (vgummelt@lamar.edu), Brian Williams (bwilliams9@lamar.edu), Matthew Pyne (mpyne@lamar.edu), Seokyon Hwang (shwang2@lamar.edu), Kyle Boudreaux (keboudreaux@lamar.edu), Chris Boone (chris.boone@beaumonttexas.gov), Angela Clavijo (adclavijo@lamar.edu)

    Applicant: Berna Eren Tokgoz


    Community resilience to natural disasters is a subject of major concern for our societies. It is a subject of extended theoretical studies that aim at its improvement by developing systematic approaches and methodologies with practical implications. ‘Community resilience’ represents the sustained and coordinated ability of a given human community to prepare for anticipated adversities, to adapt to the changing conditions, and respond to, withstand, and recover from various adverse situations – ranging from an economic crisis, technological (cyberwarfare) or human-caused disasters (nuclear war) to natural disasters like earthquakes, fire, inundations, hurricanes, etc., [1- 4]. Adaptability, anticipation, prevention, protection, mitigation, response, and recovery are keywords for a highly resilient community. Such a community is capable of minimizing losses and recovering quickly and with minimum costs after critical situations, through (i) fostering stakeholder participation and intelligent uses of available resources (including human potential and knowledge, energy, housing, medical aid, food, transportation, communication – infrastructure in general, etc.) and (ii) a careful implementation of a resilience plan based on both the social needs of the community and this pre-existing ‘built-environment’. The National Institute of Standards and Technology (NIST) has a dedicated Community Resilience department, whose main task is to define guidelines for efficient resilience planning based on these elements, [5], offering reliable tools, hints, and methodologies to set up a complete resilience-building program according to a community’s specificities. Similarly, the United States Army Corps of Engineers (USACE) introduced a resilience innovative roadmap to specifically focus on community resilience on bringing together a broad base of stakeholders and supporting partners to help identify and define the most significant risks to the community and develop pathways and tools to improve the resilience [6].

    Community resilience is generally evaluated (both qualitatively and quantitatively) based on the resilience-building activities that take place within a community [7]. It is a complex task to identify all the factors involved pertaining to the environment, society in general, public health, economy, infrastructure, and public safety. Both qualitative and quantitative approaches should be used to assess them. A sound qualitative analysis conducted over years and from different perspectives that embrace all the above-mentioned fields is a prerequisite of any attempt to define a quantitative measure of community resilience [8, 9]. A qualitative analysis has its own merits and virtues, namely, it offers better insight and more flexibility than some rigid quantitative measure which, like any aggregated tool lacks nuance. Quantitative analysis, on the other hand, benchmarks the progress measurements and helps in rapidly assessing and identifying the needs of the society to get back to its normal functionality after some disruption [10, 11]. 

  • Coastal Sociological-Ecological Restoration Group (CSERG) & Pilot Project: North Pleasure Island Reconstruction

    Investigators: Zhe Luo (zluo@lamar.edu), Liu Xingya (xliu@lamar.edu), Harden Garrick (gharden@lamar.edu), Elizabeth Silvy (esilvy@lamar.edu

    Applicant: Matthew Hoch


    Over recent decades societal awareness of the progressive degradation or loss of coastal ecosystems (dune, systems, salt to freshwater marshes, barrier islands, estuaries) due to climatic change and other anthropogenic drivers has increased. These losses include the ecological services and goods that coastal communities depend on for sustainability and resiliency to natural and anthropogenic hazards, including infrastructure protection from destructive storm energy, economic values of fisheries and wildlife, food security, tourism income, and water quality. Environmental restoration of coastal ecosystems includes hydrological modification to increase freshwater and sediment input to marshes, restriction of saltwater intrusion, elevation of subsiding marsh with dredge material, stabilization of eroding shorelines, and reconstruction of barrier islands. Within the past decade in Jefferson County, TX, all these restoration types have been implemented in Salt Bayou Watershed and Sabine Lake estuary. However, much more coastal restoration is needed, not just in SETX but across the Gulf Coast. Growing expectations for new coastal restoration projects include designs that maximize enhancement of ecological outcomes and provide benefits to society for sustainability and resiliency.

    Research and innovation on “nature-based” coastal restoration design, which places greater focus on maximizing ecological outcomes and makes greater use of living organisms, is on-going yet some new approaches are becoming mainstream. The US Army Corp of Engineers (USACE), Engineering with Nature (EwN) Program has led many of these advances in nature-based coastal restoration design. Economic analyses demonstrate nature-based approaches can also lower costs compared to traditional “grey-work” coastal protection. Increased funding incentive for nature-based restoration design has coincided with increased expectations for community engagement to better understanding sociological issue and societal priorities that can benefit project planning and design. The collective approach is called Sociological-Ecological Restoration. Lamar University, CfR needs to lead in research into, and contracts for implementing, this approach to coastal restoration, which will provide project opportunities for students interested in LU’s growing multidisciplinary EwN curriculum.

    To this end, the proposed project will galvanize a group of Social Scientists, Coastal Ecologists, and Environmental Engineers into a research and contract implementation collaborative called the Coastal Sociological-Ecological Restoration Group (CSERG, pronounced “sea surge”). CSERG will improve communication within and expand a network of external experts from County, State, and Local government agencies, and Stakeholder organizations from the environmental sector. Planning and coordination workshops will aim to establish the sociological-ecological framework of SETX coastal restoration for community resiliency and sustainability research, outreach, and project planning based on community needs and ecological benefits into the future. Web-based and mobile-app tools for outreach and education will be developed, initially with focus on nature-based coastal protection. Also proposed is a pilot study of sociological perceptions and needs as wells as ecological conditions to help guide Jefferson County in designing the reconstructive restoration of the north end of Pleasure Island. The initial engineering assessment and design is funded by TxGLO-CEPRA, cycle 12, but the sociological-ecological assessment is needed. CSERG will elevate the LU CfR as a coastal sustainability and resiliency leader in this United Nations, Decade of Ecosystem Restoration.