Structured Models with Variability in 2 Examples: (i) Dynamics of *Mycobacterium marinum* Infections, and (ii) Invasive Species Population Dynamics

Karyn Sutton

Department of Mathematics
University of Louisiana at Lafayette

March 8, 2016
Overview

- Mathematics as a means to address real problems
- Fields of mathematics arose out of applications
- Used to gain insights in applications
- Relationship between mathematics and physics well known, fruitful
- More recently, life sciences as a source of problems and new approaches in applied mathematics
Integrating mathematics and science/engineering

The Iterative Modeling Process

(i) Empirical Observations (experiments and data collection)

(ii) Formalization of properties, relationships and mechanisms which result in a biological or physical model

(iii) Abstraction or Mathematization resulting in a mathematical model

(iv) Formalization of Uncertainty/Variability in model and data resulting in a statistical model

(v) Model Analysis

(vi) Interpretation and Comparison (with the real system)

(vii) Changes in understanding of mechanisms, etc., in the real system.

Formation Stage: (i), (ii), (iii), (iv)
Solution Stage: (v)
Interpretation Stage: (vi), (vii)
Key Questions

From application/scientific standpoint:

- Model:
 - Hypothesis testing tool
- Analysis:
 - Insight to underlying mechanism
 - identify key components
- Calibrated model:
 - Predictive capability
 - improved experimental design

From mathematical/statistical standpoint:

- Develop framework of mathematical model
- Long-term/Qualitative analysis
- Numerical approximations
- Computational Issues
1. *Mycobacterium marinum* Infections

2. Invasive Species: *Pomacea maculata*

3. Graduate Studies at UL Lafayette
Joint work with:

- Dr. Azmy Ackleh, Dr. Mark Delcambre, Lihong Zhao, Department of Mathematics, UL Lafayette
- Dr. Don Ennis & students, Department of Biology, UL Lafayette
Mycobacterium marinum Infections

- Human TB is still leading infectious disease (just not in Europe or US)
 - \(\approx 9 \) million Mtb cases become acute TB,
 - \(\approx 2 \) million deaths annually,

- Studying *Mycobacterium marinum* (Mm) has some advantages to studying human TB:
 - One of most closely genetically related species to human TB
 - Life cycle/progression faster/obvious ethical advantages
 - Low risk to researchers - human infection common but not serious
 - Can eliminate some sources of variability

- Mm infections parallel human TB burden
 - Scale: wild and aquaculture fisheries (human food sources), pet aquarium, research stock

- Chronic (asymptomatic) infection extremely common

- Chronic serves as pool for more susceptible subpopulations

- Plausible transmission mechanisms only recently established (by Don Ennis and others)
Variability in Infection Progression and Outcome

Mycobacterium marinum Infections

Karyn Sutton (UL Lafayette)

Structured Models with Variability

March 8, 2016 9 / 57
Proposed transmission network

- **Mycobacterium marinum Infections**
- **Human Activities**
 - Uninfected
 - Ingestion
 - Infected
 - Ingestion
 - Shed
 - “1” Ingestion
 - “2” Shed
 - “3” Ingestion
 - Biofilms (Unactivated?)
 - Intermediate Carriers
 - Activated Bacteria
 - Activated Planktonic Mycobacteria
 - Activated Planktonic Bacteria

Karyn Sutton (UL Lafayette)
Mathematical Model

Key components

- **Structured by infection**
- Physiological differences (metabolic, immunological: susceptibility, progression, etc.)
 - Groups $i = 1, ..., m$
 - $S^i(t)$: number of susceptible fish of physiological type i at time t
 - $I^i(t, x)$: density of infected fish of type i, at time t and bacterial load x
 - $Y(t) = \sum_{i=1}^{m} S^i(t) + \int_{x_{\text{min}}}^{x_{\text{max}}} I^i(t, x)dx$

- Species involved in propagation of infection
 - $B_u(t)$: unactivated bacteria at time t
 - $B_a(t)$: activated bacteria at time t
 - $B_d(t)$: bacteria residing in fish carcasses at time t
 - $L(t)$: mosquito larvae carrying bacteria at time t
Susceptible fish:

\[
\frac{dS^i}{dt} = F^i(Y) - \mu^i S^i - \nu_1 \delta B_a S^i - \nu_2 c_1^i B_d S^i - \nu_3 \eta c_2^i L S^i,
\]

- \(F^i(Y) = \sum_{j=1}^{m} r_{ij} b^i(Y) Y^j\): birth of susceptible fish, from groups \(j\)
- \(\mu^i S^i\): natural death rate
- \(\nu_1 \delta B_a S^i\): infection through direct uptake of Mm (perhaps fecal grazing)
- \(\nu_2 c_1^i B_d S^i\): infection via consumption of infected carcasses
- \(\nu_3 \eta c_2^i L S^i\): infection via consumption of carrier mosquito larvae
Infection-structured Model

Infected fish:

\[
\frac{\partial I^i}{\partial t} + \frac{\partial (g^i I^i)}{\partial x} + \tilde{\mu}^i I^i = 0,
\]

- \(\tilde{\mu}^i I^i = \exp(b \frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}})\mu\): modified death rate of infected fish
- \(g^i(x, B_a, B_d, L) = \beta^i(x) + \sigma_1 \delta B_a + \sigma_2 e^{-\alpha^1 x} c_1^i B_d + \sigma_3 \eta e^{-\alpha^2 x} c_2^i L\): progression of infection
- \(g^i I^i \big|_{x_{\text{min}}} = \nu_1 \delta B_a S^i + \nu_2 c_1^i B_d S^i + \nu_3 \eta c_2^i L S^i\): new infections
Infection-structured Model

Activated Bacteria:

\[
\frac{dB_a}{dt} = I(t; \rho) - \delta B_a Y - \gamma B_a - \kappa B_a
\]

- \(\rho^i(x) = \check{\rho}^i \frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}:\) (per capita) rate of shed from infected fish
- \(I(t; \rho) = \sum_{i=1}^{m} \int_{x_{\text{min}}}^{x_{\text{max}}} \rho(x)I^i \, dx:\) total shedding rate of bacteria from infected fish
- \(\delta B_a Y: \) loss of bacteria through uptake by fish pop’n
- \(\gamma B_a: \) inactivation of bacteria
- \(\kappa B_a: \) removal by ‘fecal grazing’, by other animals
Infection-structured Model

Unactivated Bacteria:

\[
\frac{dB_u}{dt} = H(t, B_u) + \gamma B_a - c_L L^* B_u - \tilde{\delta} B_u Y - \kappa B_u
\]

- \(H(t, B_u) \): Effect of human interaction on biofilms
- \(c_L L^* B_u \): consumption of biofilms by mosquitos (total mosquito population, \(L^* \), assumed constant)
- \(\tilde{\delta} B_u Y \): uptake via fish
- \(\kappa B_u \): removal by fecal grazing by other animals
Mycobacterium marinum Infections

Infection-structured Model

Bacteria from dead fish:

\[
\frac{dB_d}{dt} = I(t; x\tilde{\mu}) - B_d (S(t; c_2) + I(t; e^{-\alpha^2x}c_2)) - \zeta B_d.
\]

- \(I(t; x\tilde{\mu})\): source of bacteria through the death of fish
- \(B_d (S(t; c_2) + I(t; e^{-\alpha^2x}c_2))\): consumption of bacteria (carcasses) by fish
- \(\zeta B_d\): consumption of bacteria (carcasses) by other fish species, not explicitly included
Carrier mosquito larvae:

\[\frac{dL}{dt} = \epsilon c_L (L^* - L) B_u - \mu_L L - L \left(S(t; c_2) + I(t; e^{-\alpha_2 \times c_2}) \right) \]

- \(\epsilon c_L (L^* - L) B_u \): larvae that become effective carriers upon consuming bacteria
- \(\mu_L L \): maturation rate out of larval stage
- \(L \left(S(t; c_2) + I(t; e^{-\alpha_2 \times c_2}) \right) \): consumption of carrier larvae by all fish
Model is necessarily complex → qualitative analysis intractable
Study approximate solutions numerically
Develop finite difference scheme
- Convergence of scheme (to a unique solution)
- Preservation of positivity of solutions (nontrivial for large mortality terms)
- Computational cost, accuracy, stability concerns
- Developed 1st order scheme for bacterial load-structured model
- Established results for a 1st- and 2nd-order scheme in a size-structured model
Model verification

- Model should reproduce observed behavior
 - measure of confidence
- Physiological groups required to reproduce initial experiments by Don Ennis’ lab
 - Fish fed carrier mosquito larvae
 - Time courses of dead fish (and subsequent bacterial loads counted)
 - Bacterial load counts of all fish at final time
- Justified inclusion of more than one physiological group
Figure: Time course of dead fish as compared with trends seen in the experimental setting (with $m = 6$).
Figure: The final distribution of infected fish densities in the slowest ($i = 1$), medium ($i = 3$), and fastest ($i = 5$) progressing classes. Note: density approaches zero prior to $\log(x_{\text{max}})$.
More reasonable for \(\frac{dx}{dt} = \beta^i(x) \) to be very different (not simply exponential)

Current work: allow \(\beta \) to sample from a family of progression rate functions \(\mathcal{B} \) according to some probability distribution \(P \).

Neglect several physiological groups

Need to establish validity of numerical approximations for \(\mathcal{B} \) finite and infinite-dimensional (family of functions approximated by finite (parameterized, e.g., splines) family)

Goal is to use in inverse problem \(\rightarrow \) convergence of parameter estimates \(\theta_n \) as the number of observations \(n \rightarrow \infty \)?

Computational considerations: over-parameterization, or principle of parsimony
Other future work

Intra-host studies
- Integrate current and future experiments (efforts led by Don Ennis) to develop and refine forms for intra-host progression rates $\beta(x)$

Population-level studies
- Use progress in understanding of biology & mathematical framework → simulation studies
 - What are effects of up-/down-regulation of components of food network?
 - Are certain components more critical to infection transmission than others?
 - Are there observable effects of un-observable quantities?
 - Can we infer some key rates that we cannot directly measure?
 - Design experiments via information theoretic approaches
 - Is model sufficient as is? Or, is expansion to a more naturally occurring setting feasible?
Other applications

- Applications often involve similar/identical mathematical formulation.
- Individual growth rates often highly variable
- Population dynamics governed by birth, death (predation, competition/crowding) often dependent on size
- Size-structured population models (Sinko-Streifer ‘67 - age-/size-structured)
- Another current project → *Pomacea maculata* invasive species
1. *Mycobacterium marinum* Infections

2. Invasive Species: *Pomacea maculata*

3. Graduate Studies at UL Lafayette
Invasive Species: *Pomacea maculata*

Joint work with:

- Lihong Zhao, Department of Mathematics at UL Lafayette
- Jacoby Carter, USGS National Wetlands Research Center
- *Pomacea maculata*, is recently renamed from the island applesnail, *Pomacea insularum*.
- Native to the Amazon basin.
Invasive Species: *Pomacea maculata*

Background (con’t)

- Feeds on aquatic, submerged plants.
- Introduced into United States through pet trade.
- Documented in Alabama, Florida, Georgia, Hawaii, Louisiana, and Texas.
- Once established, they are very difficult to remove.
- Overgrazing can greatly alter natural balance of local ecosystem.
 [Carlsson et al. 2004]
- Major pest in rice fields in the Phillippines, China, Laos.
Rapid and profuse reproduction.
Unknown predator community.
Potential of population explosion.
Potentially a vector for snail borne diseases.
Little has been quantified re: life cycle
 - Eggs in clutches [Colin et al. 2013]
 - Clutches contain ≥ 1000 eggs [Colin et al. 2013]
 - Non-native range, even more [Colin et al. 2013]
 - Eggs begin hatching out, presumably in layers, around 21 days.
 - From our preliminary work, approximately 200 days to maximum size.

Growth dynamics, size distribution, sex differences previously not quantified.
Growth Experiments

- Measurements taken roughly weekly, for 13 weeks.
- Snails were individually marked
 - Opaque florescent alpha numeric tags: originally attached to outside of the shell, later glued to operculum instead.
 - PIT tags: originally injected, later glued to the shell instead.
 - Marking procedures in development: most individuals < 13 weeks
- Recorded: weight, length of operculum, sex (if possible), identification, date.
- Egg masses removed from tank (no birth).
- Fed leafy plants, vegetables from grocery store.
- All snails used in this study were raised from eggs collected from the field (closed population).
Invasive Species: *Pomacea maculata*

Sex Ratio and Weight Differences

- Number of snails sexed: 99 female and 44 male
- Sex ratio is NOT 1:1.
 - 1:1 sex ratio common assumption
- More dynamics observed in weight than operculum size
- The maximal weight observed: 105.1g for female and 77.2g for male

Table: Basic Statistics for Weight

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>Mean</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>50 %</td>
<td>68.61397</td>
<td>14.1872</td>
</tr>
<tr>
<td>10 %</td>
<td>89.64636</td>
<td>5.6071</td>
</tr>
<tr>
<td>50 %</td>
<td>62.79249</td>
<td>6.287704</td>
</tr>
<tr>
<td>10 %</td>
<td>72.27843</td>
<td>2.542464</td>
</tr>
</tbody>
</table>
The weight distribution for females and males are different.
Females and males may have different growth dynamics.
Individual Variation

- Large degree of variation in individual growth rates.
- However, some trends were observed:
 - hypothesize that growth rates differ depending on size (development),
 - consistent with ecological theory: energy shift in initial growth to sexual reproduction.
- Calculated growth rates in weight *ranges*

\[g(x) = \begin{cases}
 g_1, & \text{if } x_{\text{min}} \leq x \leq x_1 \\
 g_2, & \text{if } x_1 < x \leq x_{\text{max}}
\end{cases} \]
Growth rates from direct calculation not statistically supported.

Table: Basic Statistics for Growth Rates–Female (99 Total)

<table>
<thead>
<tr>
<th>Stages</th>
<th>≤ 23g</th>
<th>23.1 – 40g</th>
<th>40.1 – 53g</th>
<th>53.1 – 71g</th>
<th>> 71g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.3531553</td>
<td>0.2316956</td>
<td>0.2332250</td>
<td>0.0626806</td>
<td>0.0935414</td>
</tr>
<tr>
<td>std.</td>
<td>0.1199893</td>
<td>0.1525451</td>
<td>0.2550575</td>
<td>0.6382982</td>
<td>0.1362457</td>
</tr>
<tr>
<td>N</td>
<td>38</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>29</td>
</tr>
</tbody>
</table>

Table: Basic Statistics for Growth Rates–Male (44 Total)

<table>
<thead>
<tr>
<th>Stages</th>
<th>≤ 24g</th>
<th>24.1 – 40g</th>
<th>40.1 – 55g</th>
<th>> 55g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.302</td>
<td>0.1255556</td>
<td>0.2083333</td>
<td>0.05481481</td>
</tr>
<tr>
<td>std.</td>
<td>0.1031504</td>
<td>0.1399206</td>
<td>0.2375723</td>
<td>0.137795</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>9</td>
<td>24</td>
<td>27</td>
</tr>
</tbody>
</table>
Initial Conclusions

- Noticeable differences in female and male populations
- Growth appears to change throughout snail’s lifespan
- Individual data too incomplete to yield reasonable estimates to characterize growth dynamics
- Population-level approach may be better (records complete unless snail was missed on observation date)
Invasive Species: *Pomacea maculata*

Female Population Growth Model

Since birth/death/predation/growth rates depend on size, we propose a size-structured model governing the dynamics of the female snail population density $p(t, x)$:

$$
\frac{\partial p(t, x)}{\partial t} + \frac{\partial (g(x)p(t, x))}{\partial x} = -\mu p(t, x),
$$

$$
p(0, x) = p_0(x).
$$

for $t > 0$, and $x_{\text{min}} \leq x \leq x_{\text{max}}$, where x_{min} and x_{max} represent the minimum and maximum weight achievable by an applesnail.

- $g(x)$: growth rate
- μ: death (and predation) rate:
- BC: birth rate $(g(x)p(t, x))|_{x_{\text{min}}} = \int_{x_{\text{min}}}^{x_{\text{max}}} \beta_F(t, x)p(t, x)dx$
- $\beta_F(t, x)$: rate at which females give birth to female snails (zero for lab)
Male Population Growth Model

Male population dynamics model is given by

\[
\frac{\partial q(t, x)}{\partial t} + \frac{\partial (h(x)q(t, x))}{\partial x} = -\mu q(t, x),
\]

\[q(0, x) = q_0(x).\]

- growth rate: \(h(x)\)
- BC: birth rate \((h(x)q(t, x))\) at \(x_{\min}\)
 \[= \int_{x_{\min}}^{x_{\max}} \beta_M(t, x)p(t, x)dx\]
- Uncoupled from females due to (current) rates being independent of population density, and zero birth rate in lab.
We then discretize the model using the following explicit finite difference approximation:

\[
\frac{p(x_j, t_{k+1}) - p(x_j, t_k)}{\Delta t} + \frac{(g(x_j)p(x_j, t_k) - g(x_{j-1})p(x_{j-1}, t_k))}{\Delta x} + \mu(x_j)p(x_j, t_k) = 0
\]

\[
(g(x)p(t, x))|_{x_{\text{min}}} = B = 0, \quad p(0, x) = IC
\]

\[
t_k = t_0 + k\Delta t, \quad k = 0, \ldots, K
\]

\[
x_j = x_{\text{min}} + j\Delta x, \quad j = 0, \ldots, J, \quad x_0 = x_{\text{min}}, \quad x_J = x_{\text{max}}
\]

The convergence of this 1st order scheme has been shown for this and even more general schemes.
Model Comparison (RSS-based) Statistic

- Appropriate number of ‘stages’ in the growth functions?
- Model comparison statistic \Rightarrow inclusion of which end points gives statistically sig. improvement?

Define the restricted parameter space to be

$$\Theta_H = \{\theta \in \Theta \mid H\theta = c\}$$

where

- H: an $r \times n_p$ matrix
- n_p: number of parameters in Θ
- r: degrees of freedom
- c: a known constant
For example, consider female snails:

- H_a: General case $m = 9$, $\{x_i\}_{i=1}^8 = \{17, 23, 40, 47, 53, 60, 71, 85\}$
- H_0: Restricted case $m = 7$, a special case of the general case with $g_4 = g_5$, $g_6 = g_7$
- $\hat{\theta} = (\hat{g}_1, \ldots, \hat{g}_9)$, $\Theta \in \mathbb{R}^9$, $n_p = 9$
- 2 more degrees of freedom in the general case than the restricted case, i.e., $r = 2$
- $\Theta_H = \{\theta \in \Theta | H\theta = c\}$

where

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \end{pmatrix}$$

$$c = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
Observe that

\[J_K(Y, \hat{\theta}_H^K) \geq J_K(Y, \hat{\theta}_K^K) \]

We define the statistic by

\[U_K(Y) = \frac{T_K(Y)}{J_K(Y, \theta_K)} = \frac{K \cdot (J_K(Y, \hat{\theta}_H^K) - J_K(Y, \hat{\theta}_K^K))}{J_K(Y, \theta_K)} \]

with corresponding realizations \(\hat{U}_K = U_K(y) \).

If \(H_0 \) is true, \(U_K \overset{D}{\to} U(r) \) as \(K \to \infty \) where \(U \sim \chi^2(r) \), a \(\chi^2 \) distribution with \(r \) degrees of freedom.
Table: RSS Statistic: 1-stage vs multi-stages—Female

<table>
<thead>
<tr>
<th>H_0: m</th>
<th>H_a: m; ${x_i}$</th>
<th>U</th>
<th>Df</th>
<th>Confidence</th>
<th>Rej.</th>
<th>H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2; ${23}$</td>
<td>0.618175916</td>
<td>1</td>
<td></td>
<td>56%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2; ${40}$</td>
<td>5.865695809</td>
<td>1</td>
<td></td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3; ${23, 40}$</td>
<td>5.979250924</td>
<td>2</td>
<td></td>
<td>94%</td>
<td></td>
</tr>
</tbody>
</table>

- Multi-stage growth functions have statistically significant improvements than single-stage growth function.
- ⇒ Single-stage growth function is not suitable for female.
Growth functions with $m > 3$ stages don't provide any statistically significant improvements

\Rightarrow More than 3 stages are not necessary.

Including 40 as an end point does provide statistically significant improvements

\Rightarrow 40 should be included as an end point.
Thus, the 2-stage growth function

\[g(x) = \begin{cases}
0.286278628, & x \in [x_{\text{min}}, 40] \\
0.0912533, & x \in (40, x_{\text{max}}^F]
\end{cases} \]

is the best for females, and the 2-stage growth function

\[h(x) = \begin{cases}
0.230553432, & x \in [x_{\text{min}}, 24] \\
0.103575229, & x \in (24, x_{\text{max}}^M]
\end{cases} \]

is the best for males.
Results from Data

Table: Piecewise Constant Function

<table>
<thead>
<tr>
<th></th>
<th>θ</th>
<th>$\hat{\theta}$</th>
<th>$SE(\hat{\theta})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>g_1</td>
<td>0.286278628</td>
<td>0.020640053</td>
</tr>
<tr>
<td></td>
<td>g_2</td>
<td>0.0912533</td>
<td>0.033049222</td>
</tr>
<tr>
<td>Male</td>
<td>h_1</td>
<td>0.230553432</td>
<td>0.024843199</td>
</tr>
<tr>
<td></td>
<td>h_2</td>
<td>0.103575229</td>
<td>0.01161497</td>
</tr>
</tbody>
</table>
Invasive Species: *Pomacea maculata*

Piecewise Constant Growth Function – Female

- **$g(x)$ Female**
 - Weight (g) vs. Growth Rate
 - **x(t) Female**
 - Weight (Unit: g) vs. Time (day)
 - $x(t)$ and 95% CI

Karyn Sutton (UL Lafayette)
Structured Models with Variability
March 8, 2016
Invasive Species: *Pomacea maculata*

Piecewise Constant Growth Function – Male

- **h(x) Male**
 - Growth Rate
 - Weight (g)
 - Weight (Unit: g)

- **x(t) Male**
 - Time (day)
 - Weight (Unit: g)
 - 95% CI

Karyn Sutton (UL Lafayette)

Structured Models with Variability

March 8, 2016
Further analysis and data

- Other growth models tried; piecewise constant the ‘best’ with given data set
- Concurrently, large number (1287) snails hatched out in 1 week in overcrowded tank
- Weighed and measured length; in triplicate for 675;
- Better characterize variability in population
Invasive Species: *Pomacea maculata*

Large sample size

Variability in growth rate strongly suggested!
Invasive Species: *Pomacea maculata*

Large sample size

Assume Snails Hatched out in Layers in Week 1

Even if we roughly scale for possible differences in birth (largest snails hatched out 1st day, etc.), appears to be substantial variability in growth rate.
Invasive Species: *Pomacea maculata*

Current/Future work

Mathematically:
- Mathematical framework and results from Mm infection project useful here.
- New knowledge of variability in growth rates effects on previous population results?
- Sample size, number of time points, and at which life stages required to characterize growth rate/function?

Experimentally:
- Currently measuring distribution of the hatch out process (i.e., birth rate)
- Currently measuring small snail weights (hatchling to around 8 g), and survivability
Mathematical framework and results necessary to address questions in Mm infection dynamics and applesnail population dynamics.

Future integration of mathematical and biological experiments to understand intra-host Mm dynamics likely useful.

Parameter estimation and model comparison statistic used to infer information on applesnail when direct measurement failed.
1. *Mycobacterium marinum* Infections

2. Invasive Species: *Pomacea maculata*

3. Graduate Studies at UL Lafayette
Graduate studies in mathematics at UL Lafayette

- Research Areas
 - Algebra (3)
 - Analysis (2)
 - Applied Mathematics (10)
 - Topology (3)
 - Statistics (4)

- Stipends:
 - Master’s: $\geq 15k$
 - Ph.D.: $\geq 17k$
 - possible summer teaching

- Application information
 - Directly to Graduate School (gradschool.louisiana.edu)
 - Master’s not required for admission to Ph.D.
 - Contact Dr. Arturo Magidin: magidin@louisiana.edu

- Recent graduates:
 - $\approx 80\%$ work in field
 - Median time to completion: 5 1/2 yrs
Applications information

- graduate school
- Master’s not required for admission to Ph.D.
- Contact Dr. Arturo Magidin: magidin@louisiana.edu

Recent graduates:

- $\approx 80\%$ work in field
- Median time to completion: 5 1/2 yrs
Thank you!