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Abstract 

Mathematical model of electromigration in terms of 

vacancy concentration is studied analytically and numerically 

in this paper with the combined effect of vacancy gradient 

(Fickian term) and electric flow. A 2-D, L-shaped, 

homogeneous material model with perfect blocking boundary 

condition (J = 0) is chosen as the problem of interest. Dandu 

and Fan have shown that current density singularity exists at 

the tip of the wedges when the angle  90
0

  [13]. This 

study investigates the effect of current density singularity at 

the tip of the wedges towards the vacancy concentration at the 

same location. The results of the study, both analytically and 

numerically, show that the location of maximum vacancy 

concentration occurs at cathode side, but not at the location of 

current density singularity. 

Introduction 

Electromigration is a phenomenon of mass transport in 

electrical conductor under the driving force of electrical 

current. Open and/or short circuit in electronic devices are 

typical failures caused by electromigration due to voids 

nucleation near cathode side and hillock development near 

anode side. Several mathematical models have been proposed 

in order to understand and/or predict the electromigration [1-

10]. They can also be utilized to improve the design of 

electronic devices in order to increase their reliability against 

electromigration failure [11]. Many studies employ the 

divergence as a metric for the failure, with four driving forces 

considered as the sources of electromigration failure. These 

four driving forces are vacancy concentration gradient 

(Fickian term), electric field or current, mechanical stress, and 

temperature gradient. In this paper, we consider electric field 

as the main driving force of electromigration failure, and the 

mathematical model of vacancy concentration coupling with 

electric potential is studied, analytically and numerically. 

Dandu and Fan [12, 13] have shown that current density 

singularity, i.e. current crowding, exists at the tip of the 

wedges when the angles  90
0

 . Black has shown that the 

median time to failure due to electromigration is inversely 

proportional to the square of current density through 

experiments [1]. Based on this information, one might 

conclude that the location of maximum vacancy concentration 

would be at the location of current density singularity. In order 

to verify this statement, the vacancy concentration coupling 

with electric potential electromigration model is studied 

analytically and numerically. A 2-D, L-shaped, homogeneous 

material model with perfect blocking boundary condition (J = 

0) is chosen to be the problem of interest because several 

electromigration experiments and/or observations are 

conducted under this configuration. 

Mathematical Model 

Electromigration is a phenomenon of mass transport, 

which can be described by Fick’s diffusion equation as 

follows. 
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where Cv is the vacancy concentration, J is the total vacancy 

flux, G is a generation or annihilation term. The total vacancy 

flux, J, is the sum of electromigration driving forces. The two 

driving forces, vacancy concentration gradient (J1) and 

electric field (J2), considered in this study can be expressed as 

follows. 
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where Dv is the vacancy diffusivity, Z
*
 is the effective charge 

number, e is the elementary charge, V is the electric potential, 

k is the Boltzmann constant, T is the absolute temperature. 

Considering that the electrostatic potential must be equal to 

zero ( 0
2

 V ), then the governing equation for the two 

dimensional (2-D) vacancy concentration coupling with 

electric potential electromigration model in Cartesian 

coordinate system can be written as 
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where the sink/source term G = 0 is used, which means grain 

boundary is not considered in this study, i.e. homogeneous 

material. In polar coordinate system, this governing equation 

can be written as 
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The boundary condition studied in this paper is perfect 

blocking boundary condition, where total flux equals to zero 

(J = 0). Clement and Lloyd [3] call this boundary condition 

constant-volume boundary condition; it “corresponds to a 

situation where vacancies are conserved which could be 

maintained in a system where a thick strong passivation layer 

would preclude changes in the volume of the conductor.” 
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The initial condition studied in this paper is 
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where Cv0 is the initial vacancy concentration. 

Analytical Solutions 

In this section, the analytical solution to vacancy 

concentration (Cv) in polar coordinate system at the location 

of current density singularity is derived. Since our interest is 

to study vacancy concentration at the location of current 

density singularity, steady state solution ( 0 tC
v

) is 

considered. In polar coordinate system, after applying the 

steady state condition, the governing equation (5) becomes 

0
111

2

*

2

2

22

2












































VC

rr

V

r

C

kT

eZC

rr

C

rr

C
vvvvv

 (8) 

For asymptotic solution, let electric potential (V) and 

vacancy concentration (Cv) be functions of r and  as follows. 
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The schematic diagram of the analytical problem is 

illustrated in (Fig. 1). 
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Figure 1. Schematic diagram of the analytical problem 

 

According to Dandu and Fan [13], current density 

singularity occurs at the locations where 0r  and  90
0

 . 

Their analytical solution to voltage function is 
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Note that voltage function is expressed in series form, 

however, only the second term, which is )(
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contributes to current density singularity )(  rV . So, 

in order to study its effect towards vacancy concentration, we 

can simplify the voltage function to 
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Apply equations (10) and (12) into the governing equation 

(8), we have 
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Since the location of current density singularity is where 

0r  and  90
0

 , we find the term 0
)(2 0 


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r . Thus, 

the governing equation (13) can be reduced to 
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Next, we consider the self-diffusion of vacancy 

concentration under singularity analysis. Its governing 

equation in polar coordinate can be written as 
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By applying equation (10) into equation (15), we have the 

same result as equation (14), which indicating that current 

density distribution does not induce vacancy concentration 

singularity. We find agreement to this finding in the numerical 

study, as is discussed in the following section. 

Numerical Solutions 

To further investigate the 2-D electric field coupled 

vacancy concentration problem, the vacancy concentration 

equation is numerically solved using finite element method. 

Simulations are done in COMSOL Multiphysics software, 

with Free Equation modeling options COMSOL offers such as 

the "PDE Weak Form Subdomain" module. The problems are 

implemented by providing COMSOL, the domain and 

boundary integrals that construct the variational form 

equations. In this study, two problems are examined. Both of 

the problems are defined by identical governing equations 

including the boundary conditions imposed on the systems. 

However, the geometries of the problem domains are 

different; the first problem, a rectangular plane, and the 

second problem, an L-shaped line, respectively. In the first 

model, owing to the rectangular domain geometry, and the 

boundary conditions employed, an electric field occurs with 

the existence of only longitudinal electric potential gradient. 

Next, the second problem is considered, where current 

crowding is induced due to the L-shaped geometry. 

Both numerical solutions belong to the vacancy transport 

equation with perfect blocking boundary conditions only with 

the contributions of two driving forces, vacancy gradient and 

electromigration force due to electric potential gradients. 

Diffusion coefficients in both problems are taken as constant. 

In this work, normalized equations are taken into 

consideration. Therefore non-dimensional equations for the 
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Eq. (4), and electrostatic potential equation are derived. 

Normalized vacancy transport equation and Laplacian electric 

potential equations are written respectively as follows. 
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With normalized boundary conditions 
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And normalized electrostatic potential equation is written 

as: 

0
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With Dirichlet boundary conditions, 1
*
V  and 0

*
V , 

at anode and cathode ends, respectively, and Neumann 

boundary conditions on the remaining boundaries. Normalized 

parameters are given as: 
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Here, electromigration parameters are chosen in a similar 

manner that is introduced in Lloyd and Clement’s paper [3]. In 

their work, coefficient in front of the electromigration force is 

suggested to be in a range of 2-8. In our simulation, a similar 

procedure is followed and the coefficient in front of the 

coupling terms of normalized vacancy and gradient of 

normalized electric potential is taken as, 1
0

*

V
kT

eZ
. 

Weak form equations of the normalized vacancy 

concentration and electrostatic potential equations derived to 

implement our model in COMSOL, which are used for both of 

the simulations, are written as: 
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1. Solution of the First Problem  

In this problem, vacancy concentration equation is coupled 

with electric potential equation with perfect blocking 

boundary conditions for both ends of the line, corresponding 

to anode and cathode. Other driving forces forged by 

mechanical stress gradient and temperature gradient are 

neglected. Simulation of this model basically yields the same 

results with the solution for the one dimensional vacancy 

transport equation driven by electromigration and diffusion 

with perfect blocking boundary conditions. Electromigration 

force is calculated coupling the electric potential gradients. 

Considering the Neumann boundary conditions and the shape 

of the line as illustrated in (Fig. 2), vertically constant distance 

between two boundary lines, electric potential gradients of 

only one direction will be effective on the electromigration 

force. Problem domain is modeled in COMSOL with a mesh 

consisting of 122 rectangular elements. 

 

 
Figure 2. Mesh structure and boundary conditions 

 

Results obtained by solving the Laplacian equation are 

shown in (Fig. 3). Gradients in vertical direction are not 

generated, thus reducing the problem to be 1-D in nature. 

  

 
Figure 3. Electric Potential and Electric Field 

 

This property enables the comparison of the simulation 

results with similar problems from literature. Additionally, an 

analytical solution is available in several published work for 

1-D vacancy transport problems [9, 14], thus numerical results 

can be verified with exact solutions. In the end, a confirmation 

of the correct implementation of the equation is made before 

moving on to the more complex problem.  

As expected, vacancy concentration increases at cathode 

end, referring to our model right end as shown in (Fig. 4). On 

the other hand, vacancy concentration decreases at left end, 

i.e. anode, and causes depletion in the vacancy. This is a 

natural result of the problem, mainly led by the 

electromigration force. Neumann boundary conditions 

employed for the solution of the electric potential equation on 

all the boundaries except at cathode and anode ends represent 

electric insulation, restriction of electron flow in this direction; 

thus, electric potential gradients perpendicular to the 

insulation boundaries will be zero. In the end, one dimensional 

electromigration force shifts the vacancy concentration 

balance in anode-cathode end direction, causing a higher 
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vacancy concentration on the cathode end, and the opposite on 

the other end. 

 

 
Figure 4. Vacancy concentration of the line at different time 

 

2. Solution of the 2-D L-Shape Problem  

In this problem, normalized vacancy concentration 

equation on an L-shaped geometry is studied. The main goal is 

to investigate the vacancy concentration, coupling with 

electric potential, which already shows singularity in its 

gradients due to current crowding effect, as discussed in the 

Analytical Solutions section. Here again, we take diffusion 

coefficient to be constant for entire domain, thus grain 

boundaries and vacancy sink/source terms are neglected. A 

schematic presentation of the problem with boundary 

conditions is given in (Fig. 5). 

 
Figure 5. Problem geometry and boundary conditions 

 

As illustrated in (Fig. 5), several locations are denoted as 

Point A, B, C, in order to be referred to when we investigate 

the vacancy concentration and electric field values.  

Electric potential and electric field on the L-shaped 

geometry is illustrated in (Fig. 6). Electric field that is needed 

to compute electromigration force and the divergence of this 

force is obtained by solving electric potential equation with 

two Dirichlet boundary conditions at anode and cathode, and 

Neumann boundary conditions to maintain electric insulation 

on remaining boundaries. 

 
Figure 6. Electric potential and gradient 

 

Electric gradient profile, on the L-shaped line, is found to 

be in agreement with analytical solution of Dandu and Fan 

[13], where singularity is observed for gradient of the voltage. 

Electric potential decreases from normalized value of one to 

zero, from anode end to the cathode end. Current crowding 

occurs at the corner on the path which electron flow follows. 

 

 
Figure 7. Vacancy concentration profile on the domain 
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Steady state solution of normalized vacancy concentration 

distribution along the L-shaped line is figured in (Fig. 7). 

Maximum vacancy concentration increases at Point C, located 

on the cathode end, where vacancy concentration decreases at 

Point A, i.e. anode, causing vacancy depletion. At Point B, 

where current singularity can be easily observed, vacancy 

concentration exhibits a lower value than the initial value. 

Vacancy concentration on the region surrounding this point 

remains mostly isometric, getting to the same steady-state 

vacancy concentration values. 

Vacancy concentration values with the increasing time at 

the points of interest are figured in (Fig. 8). The results of our 

simulation comply with our analytical finding obtained by 

applying William's method [15] for solving singular stress 

field to our problem. It is observed that vacancy concentration 

does not show singularity where current singularity exists, nor 

is there an increased vacancy concentration on the surrounding 

region. 

 

 
Figure 8. Vacancy progress with time at accumulation, 

depletion, and current crowding points 

 

In the end, simulations show that, maximum vacancy 

concentration is located at the cathode end while vacancy 

depletion is seen at the anode side of the L-shaped line. With 

the increase in time, vacancy concentration increases at Point 

C, and decreases at points A and B. Vacancy concentration 

value is in a descendent regime even at Point B, where the 

magnitude of electric potential gradient becomes maximum, 

until problem enters the steady state.  

Discussion 

This study considers only two electromigration driving 

forces, vacancy concentration gradient and electric field. All 

other possible electromigration driving forces are excluded 

from this study. This is because electric field is considered the 

main driving force of electromigration failure, that is, without 

electric current there would be no electromigration failure. 

The solitary effect of electric field towards vacancy 

concentration, without distortion from other possible 

electromigration diving forces, is also a subject of interest. 

The results from this study can be used as a baseline to 

understand the effects of other electromigration driving forces 

should they be implemented into the model. 

For homogeneous material with constant vacancy 

diffusivity and perfect blocking boundary condition, the 

results from both analytical and numerical study show that 

there is no indication of vacancy concentration singularity at 

the location of current density singularity. Instead, the location 

of maximum vacancy concentration is found to be at cathode 

side as shown in the numerical results. The experiment 

performed by Nemoto et al. [16] shows that, for conductor 

with passivation film, which is considered perfect blocking 

boundary condition in this study, voids accumulated at 

cathode side, but, for conductor without passivation film, 

generation and accumulation of voids was observed at the tip 

of the wedge. The study done by Zhang et al. shows that voids 

in solder joint generated at the location of current crowding 

[17]. At first, their results seem to be in contradiction to the 

results of this study, however, should the effects of two 

different conducting materials contacting each other and their 

interfacial boundary be considered, then the location of 

current crowding is also the location of cathode of the solder 

joint, where maximum vacancy concentration occurs. 

Despite the agreement we find with other studies, voids 

accumulation due to electromigration do occur at the corner of 

L-shape interconnect structure as shown in the study published 

by He et al [6]. From our study, maximum vacancy 

concentration does not occur at the location of current density 

singularity, which means some other forces are likely in effect. 

The model proposed by Nemoto et al. shows that mechanical 

stress can shift the location of maximum vacancy 

concentration [16]. However, whether or not mechanical stress 

has any influence to the location of maximum vacancy 

concentration, this topic is to be discussed in another study. 

Conclusion 

The mathematical model of vacancy concentration 

coupling with electric potential is studied analytically and 

numerically. A 2-D, L-shaped, homogeneous material with 

constant vacancy diffusivity and perfect boundary condition is 

chosen as the problem of interest. Current density singularity 

is known to present at the tip of the wedge; however, the 

results from the study, both analytically and numerically, show 

that there is no vacancy concentration singularity at this 

location. The maximum vacancy concentration is found to be 

at cathode side, instead of the location of current density 

singularity. 
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