Master of Engineering

Annual Program Report

Year:	2022-2023 (updated July 24, 2023)
Program:	Master of Engineering (ME)
Contact Person (include email & phone#)	Dr. Jenny Zhou, jenny.zhou@lamar.edu, 409-880 7830

Summary of Continuous Improvement Efforts since Last Report

Provide a brief description of how assessment results have been used for program improvement. Point to a specific example of how an assessment provided the program with data it could use for improvement and what that improvement was, if possible, also show evidence of the improvement. You may look at data from the two previous academic years to support this case.

Respond here:

The Master of Engineering (ME) is a 30-semester-hour non-thesis program specifically designed to cater to the needs of practicing engineers in Chemical engineering, Civil engineering, Electrical engineering, Industrial engineering, and mechanical engineering. As the Master of Engineering (ME) and Master of Engineering Science (MES) programs share many common courses, there is some overlap between this document and the report for the Master of Engineering Science (MES) program.

The following improvements have been implemented to the Master of Engineering program.

- 1. During this evaluation cycle, several new course modules were developed and integrated into the existing courses, with the primary aim of enhancing students' capacity to design engineering systems that fulfill desired needs, while taking into account critical aspects such as economic, environmental, sociopolitical, safety, and global factors (Outcome 3). Despite these efforts, the assessment data did not strongly support the anticipated improvement, which might be attributed to the substantial increase in the number of graduates (three times higher). Further investigation will be necessary to better understand the underlying factors influencing the assessment outcomes and to refine the approach for future cycles.
- 2. In response to the students' demand for a curriculum aligned with the dynamic needs of the engineering industry, we have developed and integrated several new graduate courses into the program. These additions have been incorporated to enhance the educational experience and provide students with the necessary skills and knowledge to excel in their future careers. This ongoing effort is focused on improving all student learning outcomes.
- 3. The departments have made improvements to the frequency and breadth of elective offerings, creating a more diverse range of educational pathways for students entering the program. This enhancement ensures that students have the flexibility to tailor their academic journey according to their individual interests and career aspirations, fostering a more inclusive and enriching learning experience.
- 4. The master level courses syllabi have been reviewed and revised to increase the academic rigor of the program. This effort has been started since Summer 2022 and is an ongoing project. This effort is to improve all 3 student learning outcomes. Examples can be found in Appendix 2.
- 5. Graduate faculty review student feedback and make recommendations for improvement. This effort is intended to improve all learning outcomes. Examples can be found in Appendix 3.

Program Highlights Since Last Report

Identify and briefly discuss any programmatic curriculum changes made since the last report (e.g. new courses, course changes, SLO changes, course deletions).

Respond here:

- 1. In the 2022-2023 academic year, a total of 122 students graduated from the ME program. This number reflects a significant increase, being three times higher than the number of graduates in the previous three years.
- 2. New courses have been developed and added to the program. The list of new additions is as follows.
 - 1) CHEN 5341 Mass Transfer Operations
 - 2) ELEN 5303 Python Programming
 - 3) ELEN 5366 Image Processing
 - 4) ELEN 5371 Computational Electromagnetics
 - 5) ELEN 5372 Printed Antennas & RF Circuits
 - 6) MEEN 5341 Modeling of Supercritical Fluids
 - 7) MEEN 5342 Mechanism Design and Analysis
- 3. Several new course modules have been developed and integrated into existing courses to improve student learning outcomes and bridge the gap between classroom learning and real-world problems. A list of new course modules with course titles follows. The development of most of the course modules on the list is sponsored by the CMMS Center.

	Course Module Title	Course Number	Course Title
1)	Application of Electrochemistry in Corrosion Prevention	CHEN5371	Materials Science and Engineering
2)	Fundamentals of Turbomachinery Applied to Midstream Industry	MEEN 5350	Turbomachinery
3)	Course Module Development and Implementation for Teaching Artificial Neural Network	CHEN 5301	Industrial Process Modeling and Optimization
4)	Course Module Development and Implementation for Teaching Principal Component Analysis	CHEN 5301	Industrial Process Modeling and Optimization
5)	Materials under Harsh Environment: Corrosion Fundamentals, Measurements, and Prevention	MEEN 5365	Advanced Materials Science
6)	Introduction of Project Management in Oil and Gas Projects	CVEN5320	Engineering Project Management
7)	Introduction to Transportation of Oil and Natural Gas	CVEN 5364	Transportation Engineering and Traffic Analysis
8)	DeltaV DCS Systems and Software for the Midstream Industry	INEN 5396	Automated Engineering Systems
9)	GIS Applications in Oil and Natural Gas Industry	CVEN5370	GIS Application in Engineering
10) Cost estimate and control for oil and gas projects	CVEN5320	Engineering Project Management
11	Scheduling and Resource Analysis	CVEN5320	Engineering Project Management
12	Acquisition, Cleaning and Microscopic Analysis of Spatial Data Applied to Midstream Industries	CVEN5370	GIS Application to Engineering
13) Integrity and Reliability of Thick- and Thin-Walled Pressurized Vessels	MEEN 5329	Advanced Solid Mechanics
14) Introduction to Finite Element Analysis using ANSYS Workbench	MEEN 5325	FEA with ANSYS

- 4. The departments have improved the recruiting and admission process. For example, the Department of Chemical and Biomolecular Engineering has implemented holistic recruiting and application review criteria for ME-CHEN applicants. This will likely lead to increased enrollment numbers and a more well-rounded applicant pool, thus improving graduate student population quality and performance.
- 5. The Department of Chemical and Biomolecular Engineering department developed a survey that has been submitted to industrial partners to evaluate our current offerings in process control and provide feedback on recommended updates. As we pride ourselves on producing students well-versed in the challenges and intricacies of process control, we realize the need to maintain an evergreen educational focus in that area.
- 6. Some departments previously have not consistently performed continuous monitoring of master graduate students with respect to the criteria described. Moving forward, we have implemented a continuous monitoring plan that will evaluate students in both degree programs at the time they are completing their final exam (either comprehensive exam or thesis examination). This will allow better and more dynamic departmental changes to address identified deficiencies.

Table 1. Assessment Results and Analyses for Current Cycle.

STAGE 1: PLAN	STAGE 1: PLAN		STAGE 2: DO		STAGE 3: STUDY	
Departmental Student Learning Goal	Program Student Learning Outcome	Assessment	Assessment Method/Locati on	Benchmark Expectation s	Data Results	Actions/Goals Based on Data Results* What do the data tell you? How will you use this data? How were data from the last cycle used to make changes during this cycle, and What were the results of those changes?
The Master of Engineering program is a non-thesis, 30-semester-hour program designed to suit the needs of the practicing engineers in chemical engineering, civil engineering, industrial engineering, and mechanical engineering.	Outcome #1 An ability to apply mathematics, science, and engineering principles to solve engineering problems.	Outcome #1 (SLO 1) is assessed by the following performance indicators (PIs). 1.1 Math, Science and Engineering Concepts 1.2 Math and Engineering Reasoning 1.3 Strategy/ Procedures The assessment rubrics can be found in Appendix 1.	The outcome is evaluated through the Comprehensive Exam, which takes place during the student's last semester of study. The Comprehensive Exam committee is responsible for conducting and completing the assessment.	We aim to achieve a minimum threshold of 70% (equivalent to 2.8 out of 4) for all performanc e indicators related to SLO #1.	During the evaluation cycle, a total of 122 students graduated from the ME program, and assessments were conducted for all graduates. The program met the target threshold with an overall score of 3.46, composed of individual scores of 3.41, 3.47, and 3.49 for the three PIs. However, a decline was observed in all three PIs compared to previous evaluation cycles, which could potentially be attributed to the significant increase (3 times higher) in the number of graduates. For a detailed data comparison between this cycle and previous cycles, please refer to Table A below.	 The following continuous improvements are planned for the next assessment cycle: Recognizing that all outcomes were assessed using a single assessment tool, a new assessment method will be added to provide a more comprehensive evaluation. To achieve this, we will thoughtfully select five courses, each representing one of the following different engineering disciplines:

An understanding of professional responsibility, ethics and methods of communication in the practice of engineering. 2.1 Understand professional responsibility. 2.2 Understand ethical responsibility. 2.3 Clarity and effectiveness of communication The assessment rubrics can be found in Appendix 1.	evaluated through the Comprehensive Exam, which takes place during the student's last semester of study. The Comprehensive Exam committee is responsible for conducting and completing the assessment.	achieve a minimum threshold of 70% (equivalent to 2.8 out of 4) for all performanc e indicators related to SLO #2.	cycle, the ME program witnessed a total of 122 students graduating, and assessments were conducted for all graduates. The program successfully met the target threshold with an overall score of 3.56, comprising individual scores of 3.52, 3.55, and 3.61 for the three Pls. However, it was observed that all three Pls experienced a decline compared to previous evaluation cycles, which could potentially be attributed to the significant increase in the number of graduates. For a detailed data comparison between this cycle and previous cycles, please refer to Table A below.	 (1) Due to its limited measurability, this outcome will be removed in the upcoming assessment cycle. (2) The current outcome will be replaced by the following new outcome, which will be implemented in the upcoming cycle. New Outcome: "An ability to use modern engineering tools to produce engineering analysis in a systematic manner." (3) For the upcoming cycle, in addition to the Comprehensive Exam, a new assessment method will be added to provide a more comprehensive evaluation. To achieve this, we will thoughtfully select five courses, each representing one of the five different engineering disciplines. (4) The rubric for the performance indicators related to the outcome will be developed and updated to align with newly added outcome and assessment method. (5) An assessment map for outcomes vs. assessment methods in current and upcoming cycles can be found in Table B below.
---	--	--	---	--

0	0 . "2 .			5	I = 1
Outcome #3:	Outcome #3 is	The outcome is	We aim to	During the evaluation	The following continuous improvements
An ability to	assessed by the	evaluated	achieve a	cycle, the ME program	are planned for the next assessment cycle:
design an	following	through the	minimum	witnessed a total of	Recognizing that all outcomes were
engineering	performance	Comprehensive	threshold of	122 students	assessed using a single assessment tool,
system that	indicators (PIs).	Exam, which	70%	graduating, and	a new assessment method will be added
meets desired	3.1	takes place	(equivalent	assessments were	to provide a more comprehensive
needs with	Apply	during the	to 2.8 out of	conducted for all	evaluation. To achieve this, we will
appropriate	engineering	student's last	4) for all	graduates. The target	thoughtfully select five courses, each
consideration	principles to	semester of	performanc	threshold was met	representing one of the following
of economic,	meet the needs	study. The	e indicators	with an overall score	different engineering disciplines:
environmental,	of designed	Comprehensive	related to	of 3.50 (3.51, 3.54 and	Chemical, Civil, Electrical, Industrial, and
sociopolitical,	engineering	Exam	SLO 3.	3.47 on three PIs).	Mechanical engineering. These chosen
safety and	system.	committee is		However, it was	courses will be tailored to specifically
global factors.		responsible for		observed that all	address the outcome, allowing for a
	3.2	conducting and		three PIs experienced	more targeted and diverse assessment
	Apply design	completing the		a decline compared to	approach.
	skills to achieve	assessment.		previous evaluation	The rubric for the performance
	high quality			cycles, which could	indicators related to the outcome will be
	engineering			potentially be	updated to align with the newly added
	work.			attributed to the	assessment method.
				significant increase in	 An assessment map for outcomes vs.
	3.3			the number of	assessment methods in current and
	Perform design			graduates.	upcoming cycles can be found in Table B
	with				below.
	consideration of			For a detailed data	
	economic,			comparison between	
	environmental,			this cycle and previous	
	sociopolitical,			cycles, please refer to	
	and global			Table A below.	
	factors				

Table 2. Continuous Improvement Results Since Last Report

Stage 4: ACT		
Actions/Goals Based on Data Results *Copy last cycle's actions/goals and report on progress toward continuous improvement on those here.	Status C=Complete P=Progressing N=No Action Taken	Discussion of Status If C, describe efforts that led to accomplishment of actions/goals. If P, provide update on progress made toward accomplishing actions/goals and what tasks remain If N, discuss why action toward accomplishing actions/goals has been delayed and what work will be initiated toward accomplishment.
Course addition and deletion - In response to students' demands for a dynamic curriculum, new graduate courses are developed and added, while outdated courses are reviewed and removed. These efforts ensure an up-to-date and relevant curriculum, meeting the evolving demands of the engineering field. Additionally, ongoing work will focus on incorporating engineering math and science courses to further enrich the program.	P	Numerous courses have been both added and removed from the catalog, with this process being an ongoing effort. Several course addition requests are currently under consideration and in progress. This continuous review and adjustment of the course offerings ensure that our curriculum remains dynamic and responsive to the changing needs of our students and the engineering industry.
Review and modify the existing syllabi and change course prerequisites	P	Some existing syllabi have been reviewed and revised. More course syllabi will be reviewed and revised by the departments. This is an ongoing project.
Several new course modules were developed and seamlessly into the existing courses, with the primary aim of enhancing students' capacity to design engineering systems that fulfill desired needs, while taking into account critical aspects such as economic, environmental, sociopolitical, safety, and global factors (Outcome 3).	P	Despite these efforts, the assessment data did not strongly support the anticipated improvement, which might be attributed to the substantial increase in the number of graduates (three times higher). Further investigation will be necessary to better understand the underlying factors influencing the assessment outcomes and to refine the approach for future cycles. This is an ongoing project.

Table A: Detailed Data for This Cycle and the Previous cycles (2022-2023)

	AY 2022-23	AY 2021-22	AY 2020-21	AY 2019-20
Number of students	122	36	40	52
graduated and assessed				
SLO 1	3.41	3.55	3.78	3.6
	3.47	3.79	3.94	3.4
	3.49	3.86	3.71	3.5
SLO 2	3.52	3.48	3.78	3.5
	3.55	3.62	3.61	3.4
	3.61	3.86	3.61	3.4
SLO 3	3.51	3.83	3.8	3.4
	3.54	3.86	3.6	3.6
	3.47	3.69	3.6	3.3

Table B - Assessment Map: Outcomes vs. Assessment Methods in Current and Upcoming Cycles

Outcomes	2022-2023 Assessment Method	2023-2024 Assessment Method	2026-2027 Assessment Method	2027-2028 Assessment Method
Outcome 1				
SLO 1 An ability to apply the knowledge of mathematics, sciences, and engineering to solve scientific and engineering problems of complex natures.	Comprehensive Exam	 Comprehensive Exam Five courses (one course in each of five different disciplines) 	 Comprehensive Exam Five courses (one course in each of five different disciplines) 	 Comprehensive Exam Other five courses (one course in each of five different disciplines)
Outcome 2				
Current SLO 2 An understanding of professional responsibility, ethics and methods of communication in the practice of engineering	Comprehensive Exam	Note: Due to its limited measurability, this outcome will be removed in the upcoming assessment cycle.	NA	NA
Future SLO 2 An ability to use modern engineering tools to produce engineering analysis in a systematic manner.		 Comprehensive Exam Five courses (one course in each of five different disciplines) 	 Comprehensive Exam Five courses (one course in each of five different disciplines) 	 Comprehensive Exam Other five courses (one course in each of five different disciplines)
Outcome 3				
SLO 3 An ability to design an engineering system that meets desired needs with appropriate consideration of economic, environmental, sociopolitical, safety and global factors.	Comprehensive Exam	 Comprehensive Exam Five courses (one course in each of five different disciplines) 	 Comprehensive Exam Five courses (one course in each of five different disciplines) 	 Comprehensive Exam Other five courses (one course in each of five different disciplines)

Appendix 1: Master of Engineering Assessment Rubrics

Outcome #1: An ability to apply mathematics, science, and engineering principles to solve engineering problems.

PI	4-Exemplary	3-Acceptable	2-Marginal	1-Unacceptable
Math, Science and Engineering Concepts	Explanation shows good understanding of the math and engineering concepts used to solve the problem(s).	Explanation shows some understanding of the math and engineering concepts used to solve the problem(s).	Explanation shows little understanding of the math and engineering concepts needed to solve the problem(s).	Explanation shows very limited understanding of the underlying concepts needed to solve the problem(s)
Math and Engineering Reasoning	Clear evidence of effective math and engineering reasoning.	Some evidence of math and engineering reasoning.	Little evidence of math and engineering reasoning.	No evidence of math and engineering reasoning.
Strategy/ Procedures	Clear evidence of using effective strategies to solve the problem(s).	Some evidence of using strategies to solve the problem(s), but not doing it consistently.	Rarely uses an effective strategy to solve problems.	Never uses an effective strategy to solve problems.

Outcome #2: An understanding of professional responsibility, ethics and methods of communication in the practice of engineering.

Dimension	4-Exemplary	3-Acceptable	2-Marginal	1-Unacceptable
Understand professional responsibility	Describe the professional impact of a solution in details with pertinent facts. Ascertain exactly what decision must be decided upon.	Identify the professional impact, including pertinent facts, and ascertain possible decisions for consideration.	Have a vague idea of the professional impact and is uncertain what must be decided upon.	Do not recognize the professional impact and does not identify what must be done.
Understand ethical responsibility	Describe the ethical impact of a solution in details with gathered pertinent facts. Ascertain exactly what action must be taken.	Identify the ethical impact, including pertinent facts, and ascertains various possible solutions.	Have a vague idea of the ethical impact and is uncertain what must be done.	Do not recognize the ethical impact and does not identify what decision must be made.

Clarity and effectiveness of communication	Communication is clear, organized, effective and accurate.	Communication is somewhat lacking in one of the following: clarity, organization, effectiveness, and accuracy.	Communication is weak in two or three of the critical areas: clarity, organization, effectiveness, and accuracy.	Communication is weak in all the following areas: clarity, organization, effectiveness, and accuracy.	
--	--	--	--	---	--

Outcome #3: An ability to design an engineering system that meets desired needs with appropriate consideration of economic, environmental, sociopolitical, safety and global factors.

Dimension	4-Exemplary	3-Acceptable	2-Marginal	1-Unacceptable
Apply engineering principles to meet the needs of designed engineering system	Correctly apply engineering principles to meet the needs in one or more engineering systems.	Apply proper engineering principles for analysis and design, but the application is limited in completion.	Understand engineering principles but lack of consideration in analysis and design, not fully utilize the engineering principles.	Do not understand the engineering principles in the analysis/design and lack of application in any engineering works.
Apply design skills to achieve high quality engineering works	Effectively apply design skills to achieve a high-quality work in engineering within all constraints considered.	Familiar with design skills to complete a required engineering work, but the skills do not show broad applications.	Understand the importance of design skills but cannot complete a required task, with limited consideration of applications.	Lack understanding, design skills; have no knowledge on how to use them to accomplish engineering tasks.
Perform design with consideration of economic, environmental, sociopolitical, and global factors	Demonstrate understanding and perform the design with consideration of 3 or more factors.	Demonstrate some understanding and perform the design with consideration of 2 factors.	Demonstrate minimal understanding and perform the design with consideration of 1 factor.	Show no understanding of the design process without consideration of any factor.

Appendix 2: Example of Syllabus Revision and New Course Development

DEPARTMENT OF ELECTRICAL ENGINEERING Summary of the Proposed Changes and New Graduate Courses

		Modifications			
Current From University Catalog	Suggested Modification	Title	Descri	Pre-	New
			ption	Req	
ELEN 5307 - Computer Networks I	ELEN 5307 - Computer Network Analysis	X	X	X	
Addresses computer networks and data	& Design				
communications from a top-down	This course primarily discusses				
approach. Discusses networks based	computer networks from the				
applications and layered network	perspective of analysis and design.				
architectures. Develops fundamental	Topics include network-based				
concepts of computer networks and shows	applications, layered network				
how these concepts are embodied in	architectures, ARQ and analysis,				
advanced network architectures such as	performance analysis, packet switching,				
TCP/IP. Offered: Other	shortest path routing algorithms, design				
	of the Internet architecture, and its				
	widely used core protocols.				
	Prerequisite: MATH 3370 or equivalent				
	with a minimum grade of C.				
ELEN 5311 - Comp Network Security	ELEN 5311 - Cyber Physical System &	X	X	X	
Principles and practices of cryptography,	Security				
network security and secure software.	In this course, we discuss cyber-physical				
Offered: Fall	systems and security, and the principles				
	and practices of cryptography and				
	network security. Following an				
	introduction and review of the basics of				
	cyber security, the course presents				
	cyber-physical systems and security,				
	security of wireless sensor networks,				
	control systems, industrial control				
	systems, power grids, embedded				
	systems and RFID, cryptographic				
	methods, key distribution, protocols for				

		Modifications			
Current From University Catalog	Suggested Modification	Title	Descri	Pre-	New
			ption	Req	
	authenticated and confidential				
	communications, and IPSec.				
	Prerequisite: ELEN 3431 or equivalent				
	with a minimum grade of C.				
FLEN F242 Device Florings	FLEN 5242 Bower Floatmanian		V		
ELEN 5312 - Power Electronics	ELEN 5312 - Power Electronics The course introduces the switched-		X		
The course starts with switched-mode DC-					
DC converters. First, basic circuit	mode converters. Includes steady-state				
operation, including steady-state	converter modeling and analysis, switch				
converter modeling and analysis, switch	realization, discontinuous conduction mode and transformer-isolated				
realization, discontinuous conduction mode, and transformer-isolated converters	converters. Ac modeling of converters				
will be covered. Next, converter control	using averaged methods, small-signal				
systems are covered, including AC	transfer functions, feedback loop design				
modeling of converters using averaged	and transformer design. Prerequisites:				
methods, small-signal transfer functions,	ELEN3322 or equivalent with a				
and classical feedback loop design.	minimum grade of C.				
Prerequisite: ELEN 3322.	inininani grade or c.				
ELEN 5314 - Introduction to Robotics	ELEN 5314 - Robotics Systems	X	X	Х	
This course is concerned with	This course reviews the interplay	^	^	^	
fundamentals of robotics, including	between control and robotics through				
kinematics, dynamics, motion planning,	introducing theory and demonstrating				
computer vision, and control. The goal is	applications. It aims to provide an in-				
to provide complete introduction to the	depth coverage of control design for				
most important concepts in these subjects	robotic manipulators and mobile				
as applied to industrial robot	robots. We focus primarily on				
manipulators, mobile robots, and other	fundamental theory, control design				
mechanical systems. A complete treatment	methods, and their application on				
of the discipline of robotics would require	practical robotic systems. Topics may				
several courses. Nevertheless, at the	include modeling of robotic systems,				
present time, the majority of robot	linear control of robotic systems,				
applications deal with industrial robot	Course projects will emphasize				
arms operating in structured environments	modeling, simulation and				
so that a first introductory course must	implementation of control systems for				
include a rigorous treatment of such	robot applications. Prerequisite ELEN				
robots.					

		Modifications			
Current From University Catalog	Suggested Modification	Title	Descri	Pre-	New
			ption	Req	
	4351 or equivalent with a minimum				
	grade of C.				
ELEN 5316 - Digital Comm I	ELEN 5316 - Digital Communications	X	X	X	
Introduction to communication systems	This course primarily discusses digital				
with emphases on the analysis of	communication systems with an				
baseband/bandpass digital transmission	emphasis on the analysis of				
systems including probability theory.	baseband/bandpass digital transmission				
Offered: Other	systems with and without channel				
	noise. Topics include transmission				
	impairments, Shannon capacity, Nyquist				
	method, baseband communications,				
	carrier communications, FDM, sampling				
	theory, pulse code modulation, digital				
	representation of signals, theory of				
	probability/random processes and its				
	applications in digital communications,				
	digital transmission in the presence of				
	noise, digital modulations, optimal				
	design of transmitter and receiver, and				
	M-ary communications. Prerequisite:				
	MATH 3370, ELEN 3431 and ELEN 3313,				
	or equivalent with a minimum grade of				
	C.				
ELEN 5317 - Programmable Logic	ELEN 5317 - PLC Systems &	X	X	X	
Controllers	Programming				
This course is to teach electrical	This course is designed to provide an in				
engineering students the fundamental	depth understanding of the PLC				
concepts, methods of analysis and design	Networking, Analog systems, advanced				
of programmable logic controllers and	instruction set features,				
systems. Topics include programmable	communications, diagnostics, modem				
logic controllers, ladder logic programming	and internet connections, remote I/O,				
and advanced PLC operations. May be	Ethernet, motion control. Formal				
taken up to twice for credit.	methods are introduced during this				
	course to encourage the students to				
	design a control algorithm. Formal				

		Modifications			
Current From University Catalog	Suggested Modification	Title	Descri	Pre-	New
			ption	Req	
	methods are also important to verify				
	and validate the control algorithm				
	before implementing it. Prerequisites:				
	ELEN 3431 or equivalent with a				
	minimum grade of C.				
ELEN 5336 - Instrumentation Systems &	ELEN 5336 - Advanced Instrumentation	X	X	X	
Automation	and Automation Systems				
Study of electronic instrumentation	The course starts with an overview of				
systems for performing engineering	electronic instrumentation systems for				
measurements on electrical, mechanical,	performing engineering measurements on				
and fluid systems; and design of modern	electrical, mechanical, and fluid systems				
computerized industrial control and	and then progresses to more advanced				
automation systems. The topics covered	topics and design of modern computerized				
include: architectures of instrumentation	industrial control and automation				
and industrial control and automation	systems. The topics covered include:				
systems IAS; signal conditioning circuits;	detailed discussion of physical principles				
recording systems; measurement systems	of sensors' operation; architectures of IAS;				
for: strain, force, displacement velocity,	principals of signal conditioning, recording				
acceleration, temperature, fluid	and measurement systems for: strain,				
mass/velocity, and vibration; digital-	force, displacement, velocity, acceleration,				
interface; IAS design using: IEC61131-3	temperature, fluid mass/velocity, and				
control programming languages, RDB, and	vibration; digital-interface; PID controls;				
HMI; PID-controls; open system buses; and	open system buses; and other advanced				
an introduction to advanced topics in ISA.	topics in ISA. Prerequisite: Prerequisite:				
	ELEN 4351 or equivalent with a minimum				
FLEN F246 Digital Signal Processing	grade of C. ELEN 5346 - Statistical DSP	Х	X	Х	
ELEN 5346 - Digital Signal Processing Sampling/reconstruction, quantization,		^	^	^	
	This course discusses the topics of				
discrete-time systems, digital filtering, Z- transforms, transfer functions, digital filter	Statistical DSP. These topics include an overview of Discrete Random				
realizations, discrete Fourier transform					
(DFT) and fast Fourier transform (FFT),	Processes, Wiener and Adaptive filtering, Non-parametric and				
finite impulse response (FIR) and infinite	Parametric spectral estimation, and				
impulse response (IIR) filter design, and	Frequency estimation; and other				
digital signal processing (DSP)applications.	advanced topics. Prerequisite: ELEN				
Offered: Other	auvanceu topics. Frerequisite. ELEN				
Onerea. Other					

		Modificatio			ns		
Current From University Catalog	Suggested Modification	Title	Descri	Pre-	New		
			ption	Req			
	4314 or equivalent with a minimum						
	grade of C.						
ELEN 5350 - Python Programming					X		
This course covers the fundamentals of computer programming using Python as a							
programming language. Important elements of Python programming and its unique							
features will be covered. Its applications to solve some engineering problems will be							
presented. Pre-request ELEN 1301 or equiva	lent with a minimum grade of C.						
ELEN 5366 - Image Processing					X		
This course introduces the principals of Imag							
of basics of digital imaging, an overview of h							
transformations and spatial filtering, filterin							
and reconstruction (including the optimum a	* 1 · · · · · · · · · · · · · · · · · ·						
color image processing, wavelets and multir							
compression, and introduction to morphological image processing. Prerequisite: ELEN							
4314 or equivalent with a minimum grade of	f C.						
ELEN 5371 - Computational Electromagnetic	CS				X		
This course covers concepts regarding electr	omagnetics, antennas, RF and						
microwaves, computational electromagnetic							
various types of antennas and radar cross se	ection using electromagnetic simulation						
software. In addition, some specific types of	antennas such as broadband and						
frequency-independent antennas will be cov							
equivalent with a minimum grade of C.	·						
ELEN 5372 - Printed Antennas & RF Circuits					X		
This course introduces the printed antennas	and microstrip circuits such as patch						
antennas, inverted L/F antennas, monopole							
feeding networks, filters, and directional cou	•						
multiband applications. Prerequisite: "Anter	· · · · · · · · · · · · · · · · · · ·						
minimum grade of C.	•						

Appendix 3: Example of Continuous Improvement on Graduate Courses

INEN 5320 Statistical Decision Making (summer 23)

Identification: INEN 5320 Statistical Decision Making is usually offered during long semester, but it had to be offered during the summer to meet the needs of some of our graduate students. In order to adapt the course to an accelerated half-summer term the content had to be reduced.

Improvement: The instructor reviewed the content that he had previously taught during the long semester in a similar graduate statistics course and identified the most important topics to cover. Priority was given to core concepts with the assumption that graduate students could expand their knowledge independently later on. For example, the core ideas associated with hypothesis testing were covered and a few example tests were given, but the full list of tests covered in the textbook were left out.

Result: Students need time outside of class to work problems in order to master the material taught in this statistics course. The reduced load appears to have synced well with the time they had (usually 1 evening) between lessons to learn the materials. Students generally provided positive feedback and indicated that they spend a lot of time outside of class. Some students felt very challenged and in the course evaluation comments asked that that more material be removed, but at the same time, they did indicate a positive experience and the grades for the course suggest that they learned the material.

ELEN-5314 - Intro to Robotics (Spring 22)

Identification: Main Students' Comments - Introducing labs on some sort, and/or implementing MATLAB to both practice using MATLAB and to help students better practice what they learn

Improvement Plan: Add MATLAB/Simulink to the course material.

ELEN-5301 Num. Methods in Electromagnetics (Fall 22)

Identification: Main Students' Comments

- No FEKO Software License for Mac PC user, student version software doesn't convenient for some of the project. Need FEKO official license for all students.
- Need to FEKO full version license software, in student version some parameter not work properly.

Improvement Plan:

• Check if we can solve FEKO issues.

ELEN 5301-Python Programming I (Spring 22)

Identification: Main Students' Comments

• The grading system used to grade the assignments is almost for professionals. Not even professionals have to worry about this type of grading, because they are judged on whether the code works or not. My second assignment for example, I have worked the entire week to make sure my

code is functioning and it does not look like anything on the internet. However, I still lost over 28 points on minor details that is not even mentioned in the assignment. even though the codes accomplish the main objective of the assignment.

Improvement Plan:

• Check the grading system.

ELEN 5314- PLC Prog (Summer 2022)

Identification: Main Students' Comments

• As I have 3+ years field work experience as a control system engineer, therefore I will suggest that this course can be improved, by providing the industrial software and hardware like Rs Logix 5000 and the course content should be industry/field oriented. This PLC is installed in every second industry, so it would be good for student to work on its software and test his/her logic in lab with hardware. so in this way he/she can get best job and make a career by utilizing only this single course. if university need my help regarding the course content focused on industry (i.e. process industry), software and hardware that would be honor for me

Improvement Plan:

• Work with the college to get licensing for up-to-date software.