Main Ideas

- Learn about Bivariate data
- Learn how to interpret data from a scatterplot
- Learn about the difference between Linear and Non-linear relationships.
- Explain the different types of correlation
- Learn how to calculate the correlation coefficient, r
Section 5.1 Scatterplots and Correlation

Bivariate data is data in which two variables are recorded or measured on an entity.

The explanatory (independent) variable, \(x \), explains the variation in the data

- \(x \)-axis, horizontal axis

The response (dependent) variable, \(y \), changes as a response to changes in the explanatory variable

- \(y \)-axis, vertical axis

A scatterplot shows all of the points of data with the explanatory variable along the \(x \)-axis and the response variable along the \(y \)-axis

Each point in a scatterplot: \((x, y)\)

Linear vs Nonlinear

- positive linear association
- negative linear association
- nonlinear association
- no association
Linear Vs. Non-Linear

Linear

The scatterplot seems to increase or decrease at a constant rate.

Non-linear

The scatterplot seems to increase and then decrease or vice versa, making what looks like a curve.

2/24/2020
Positive vs Negative (Inverse)

Positive

Perfect Positive Correlation

$r = 1$

High Positive Correlation

$r = 0.9$

Low Positive Correlation

$r = 0.5$

Negative (Inverse)

As x increases, so does y

$r = -1$

$r = -0.9$

$r = -0.5$

No Correlation

$r = 0$

Correlation Coefficient, r: Measures the degree of a linear relationship; i.e., how well the data clusters around a line. r is always between -1 and 1. The correlation is stronger closer to -1 and 1, and the relationship is weaker closer to 0.

Notes by Caxton Petri page 4
If the scatterplot indicates a nonlinear relationship, you cannot use \(r \) to measure the strength of the relationship.

Finding the correlation coefficient in Excel: \(=\text{CORREL(array1, array2)} \)

Note: The arrays need to be the same size since the data is paired

Facts about \(r \):
- Between -1 and +1.
- If \(r > 0 \), the relationship is positive (the line has a positive slope).
- If \(r < 0 \), the relationship is negative (the line has a negative slope).
- A value of \(r \) near -1 to +1 means the data is tightly bundled around the line.
- A value of \(r \) near zero means there is no linear relationship between \(x \) and \(y \).
- \(r \) depends on the mean of the explanatory and response variables. Therefore, it is very sensitive to outliers in the data.

Open Past Course Data In Excel:
Find the correlation coefficient and create a scatterplot for the following sets of data.
1. Homework Average vs Course Grade
2. Attendance vs Course Grade
3. No. Absences vs Course Grade