Ex: Graph: \(r = 2 + 4 \cos \theta \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>2</td>
</tr>
<tr>
<td>(\pi)</td>
<td>-2</td>
</tr>
<tr>
<td>(3\pi/2)</td>
<td>2</td>
</tr>
<tr>
<td>(2\pi)</td>
<td>6</td>
</tr>
</tbody>
</table>

How do we know we went through the origin? i.e. when is \(r \) zero? [origin]

\[
r = 0 = 2 + 4 \cos \theta \\
-2 = 4 \cos \theta \\
\frac{-1}{2} = \cos \theta \\
\theta = \cos^{-1} \left(\frac{-1}{2} \right) = \frac{2\pi}{3}, \frac{4\pi}{3}
\]

Area with polar coordinates:

\[
A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta
\]

Ex: Find the area inside the inner loop of \(r = 2 + 4 \cos \theta \)

\[
A = \int_{-\pi/3}^{\pi/3} \frac{1}{2} (2 + 4 \cos \theta)^2 \, d\theta = \frac{1}{2} \left[4 + 16 \cos^2 \theta + 16 \cos \theta \right] \, d\theta \\
= \left[2 + 8 \cos \theta + 8 \cos \theta \right] \, d\theta \\
= 2 \int_{-\pi/3}^{\pi/3} d\theta + \frac{4}{2} \int_{-\pi/3}^{\pi/3} (1 + \cos 2\theta) \, d\theta + 8 \int_{-\pi/3}^{\pi/3} \cos \theta \, d\theta \\
= 2 \left[\theta \right]_{-\pi/3}^{\pi/3} + 4 \left[\theta + \sin 2\theta \right]_{-\pi/3}^{\pi/3} + 8 \left[\sin \theta \right]_{-\pi/3}^{\pi/3} \\
= 4 \pi - 6 \sqrt{3} = 2.1740
\]
Between curves:

\[
\text{Area} = \int_\alpha^\beta \frac{1}{2} r_0^2 \, d\theta - \int_\alpha^\beta \frac{1}{2} r_1^2 \, d\theta = \int_\alpha^\beta \frac{1}{2} (r_0^2 - r_1^2) \, d\theta
\]

\[
A = \int_\alpha^\beta \frac{1}{2} (r_0^2 - r_1^2) \, d\theta
\]

Ex: Find the area inside \(r = 3 + 2 \sin \theta \) [no origin] and outside \(r = 2 \).

Symmetry (pos. side)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>5</td>
</tr>
<tr>
<td>(\pi)</td>
<td>3</td>
</tr>
<tr>
<td>(3\frac{\pi}{2})</td>
<td>1</td>
</tr>
<tr>
<td>2\pi</td>
<td>3</td>
</tr>
</tbody>
</table>

\(\theta = \frac{\pi}{6}, \frac{5\pi}{6} \)

\(2 = 3 + 2 \sin \theta \)
\(\frac{1}{2} = \sin \theta \)
\(\theta = \frac{\pi}{6} \)

Where intersection?

What about finding all the area covered by both shapes?