Ex: Find the tangent line(s) to: at \((0,4)\)

\[x = t^5 - 4t^3 \]
\[y = t^2 \]

- Slope: \(m = \frac{dy}{dx} \). We're going to do it without eliminating the parameter.

Remember:

\[\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t}{5t^4 - 12t^2} = \frac{2}{5t^2 - 12t} \]

\[M = \frac{dy}{dx} \bigg|_{t=0} = \frac{2}{t=0} \]

\[\frac{dy}{dx} = \frac{2}{t=0} \]

\[M = \frac{dy}{dt} \bigg|_{t=0} = \frac{2}{t=0} \]

\[y = t^2 \]

\[y_1 = 4 - \frac{1}{8}(x - 0) = 4 - \frac{1}{8}x \]

- \(t = 2 \):

\[m = \frac{dy}{dx} \bigg|_{t=2} = \frac{1}{8} \]

\[y_2 = 4 + \frac{1}{8}(x) = 4 + \frac{1}{8}x \]

- Where's increasing or decreasing?

\[\frac{dy}{dx} > 0 \text{ or } \frac{dy}{dx} < 0 \]

\[\frac{dy}{dx} = \frac{0}{5t^2 - 12t} \]

\[> 0 \text{ or } < 0 \]

\[\frac{dy}{dx} \]

Geometric interpretation:

Concavity: second derivative. \(\frac{d^2y}{dx^2} \)

\[\frac{d^2y}{dx^2} = \frac{d(dy/dx)}{dx} \]

Look at the derivative as a function.

\[\Rightarrow \frac{d}{dx}(y) = \frac{d}{dx}(t^5 - 4t^3) \]

This is my new function.

\[x = t^5 - 4t^3 \]

\[y = t^2 \]

\[\frac{d}{dx}(t^3) = \frac{d}{dx}(t^5 - 4t^3) = \frac{2t}{5t^4 - 12t^2} \]

\[\big(\frac{d}{dx}(t^2) \big) = \frac{2t}{5t^4 - 12t^2} \]

\[\frac{d}{dx}(t^2) = \frac{d}{dx}(t^5 - 4t^3) \]

\[\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) \]

Then...

\[\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) \]
Example:

\[x = t^5 - 4t^3 \]
\[y = t^2 \]

\[\frac{dx}{dt} = \frac{2}{5t^3} \quad \frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{2}{5t^3 - 12t} \right) \]

\[\frac{dx}{dt} = 5t^4 - 12t^2 \]

\[\frac{d^2y}{dx^2} = \frac{-2 \left(15t^2 - 12 \right) \left(5t^3 - 12t \right)^2}{5t^4 - 12t^2} \]

Arc Length (parametric equations):

Given: \(x = f(t) \) on \(a \leq t \leq b \)

\[L = \int_{a}^{b} ds \]

What will it be this time?

- \(t \)-range for one trace.

If \(ds = \sqrt{1 + \left(\frac{dx}{dt} \right)^2} \), \(dx \) will need \(y = f(x) \)

If \(ds = \sqrt{1 + \left(\frac{dy}{dt} \right)^2} \), \(dy \) will need \(x = f(y) \)

If \(ds = \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \), \(dt \) will need \(x = f(t) \)

If \(ds = \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dx} \right)^2} \), \(dt \) will need \(y = h(t) \)