Example: \(x = 5 \cos(t) \) for \(0 \leq t \leq 2\pi \)
\(y = 2 \sin(t) \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(\pi)</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{3\pi}{2})</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>2\pi</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

→ Eliminate parameter:

- \(t = \cos^{-1}\left(\frac{x}{5}\right) \rightarrow y = 2 \sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right) \) \(\left(??? \text{ not easy to deal with, at all!}\right) \)
- \(\cos(t) = \frac{x}{5}, \sin(t) = \frac{y}{2} \), we know \(\cos^2(t) + \sin^2(t) = 1 \)

\(\frac{x^2}{25} + \frac{y^2}{4} = 1 \Rightarrow \text{ellipse!} \)

Now we clearly see what this is.

\(\left(\frac{x}{5}\right)^2 + \left(\frac{y}{2}\right)^2 = 1 \)

Reminder: we should not have assumed we have the entire ellipse.

→ Directions:

\(\frac{dx}{dt} = -5 \sin(t) \quad \frac{dy}{dt} = 2 \cos(t) \)

Look at the tangents: \(0 \leq t \leq \frac{\pi}{2} \)

\(\frac{dx}{dt} < 0, \quad \frac{dy}{dt} > 0 \)

So, \(\frac{dx}{dt} < 0 \), \(\frac{dy}{dt} > 0 \)

As long as \(\cos, \sin \) are raised only to the 1st power (same for \(t \)), whenever direction we have on the 1st quadrant, it'll be kept (continued) in the next quadrants. No need to worry about change of behavior.
Ex: \(x = 5 \cos (3t) \) for \(0 \leq t \leq 2\pi \)

\[y = 2 \sin (3t) \]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>(\pi)</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{3\pi}{2})</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(2\pi)</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

- Looks like the graph.
- By looking at the points it seems like we're going clockwise!

\[\Delta x = -15 \sin (3t) \quad \Delta y = 6 \cos (3t) \]

Different range: \(0 \leq t \leq \frac{\pi}{6} \)

\(\Delta x < 0, \quad \Delta y > 0 \)

So that we stay on the first quadrant.

→ Easier way: How many times are going around the ellipse?

First answer, when do we complete our first revolution?

\((5, 0) \) → \(5 = 5 \cos (3t) \) & \(0 = 2 \sin (3t) \)

[treat 1 location] \(1 = \cos (3t) \) & \(0 = 2 \sin (3t) \) [treat 2 locations]

\(3t = 0 + 2\pi n \) where \(n = 0, 1, 2, ... \)

\(3t = 2\pi n \) → \(t = \frac{2\pi n}{3} \)

Then we're at the origin at:

\(t = 0, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{6\pi}{3} = 2\pi \)

Then, 3 revolutions!

Ex: \(x = 3 \cos (2t) \)

- Sketch, plots (algebraic sketch only)
- Limits on \(x \) and \(y \)
- Range of \(t \) for one trace (no portion retracted).

\(y = 1 + \cos^2 (2t) \)

This isn't a complete parabola, though.

\(y = 1 + \frac{x^2}{9} \)

We know:

\(-1 \leq \cos (2t) \leq 1 \) \(\Rightarrow -3 \leq 3 \cos (2t) \leq 3 \)

\(-3 \leq x \leq 3 \)

\(0 \leq \cos^2 (2t) \leq 1 \) \(\Rightarrow 1 \leq 1 \cos^2 (2t) \leq 2 \)

\(1 \leq y \leq 2 \)

So, now we have our parametric curve (no direct yet).