CHAPTER 5: Integration

5.1 Antiderivatives and Indefinite Integration

Definition 5.1.1. A function F is an antiderivative of f on an interval I when $F'(x) = f(x)$ for all x in I.

Example 5.1.2. Find some antiderivatives of $f(x) = 2$.

$$F'(x) = f(x) = 2.$$
$$F'(x) = 2x + c,$$ c is a constant

Theorem 5.1.3. If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C,$$ where C is an arbitrary constant
Now we have the integral (indefinite form)

\[Y = \int f(x) \, dx = F(x) + C \]

where

- \(f(x) \): integrand
- \(dx \): variable of integration
- \(F(x) \): antiderivative of \(f(x) \)
- \(C \): an arbitrary constant

Note 5.1.5 The inverse nature of integration and differentiation can be verified by substituting \(F'(x) \) for \(f(x) \) in the indefinite integration defined to obtain

\[\int F'(x) \, dx = F(x) + C \]

Moreover, if \(\int f(x) \, dx = F(x) + C \), then

\[\frac{d}{dx} \left(\int f(x) \, dx \right) = f(x) \]
Basic Integration Rules

Differentiation Formula | Integration Formula
\[\frac{d}{dx} [c] = 0 \quad \rightarrow \quad \int 0 \, dx = c \]
\[\frac{d}{dx} [kx] = k \quad \rightarrow \quad \int k \, dx = kx + c \]
\[\frac{d}{dx} [kf(x)] = kf'(x) \quad \rightarrow \quad \int kf(x) \, dx = k \int f(x) \, dx \]
\[\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x) \quad \rightarrow \quad \int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx \]
\[\frac{d}{dx} [x^n] = nx^{n-1} \quad \rightarrow \quad \int x^n \, dx = \frac{x^{n+1}}{n+1} + c, \; n \neq -1 \]
\[\frac{d}{dx} [\sin x] = \cos x \quad \rightarrow \quad \int \cos x \, dx = \sin x + c \]
\[\frac{d}{dx} [\cos x] = -\sin x \quad \rightarrow \quad \int \sin x \, dx = -\cos x + c \]
\[\frac{d}{dx} [e^x] = e^x \quad \rightarrow \quad \int e^x \, dx = e^x + c \]
\[\frac{d}{dx} [a^x] = (\ln a) a^x \quad \rightarrow \quad \int a^x \, dx = \left(\frac{1}{\ln a}\right) a^x + c \]
\[\frac{d}{dx} [\ln x] = \frac{1}{x}, \; x > 0 \quad \rightarrow \quad \int \frac{1}{x} \, dx = \ln |x| + c \]
Example 5.1.6 Find the indefinite integral

1. \[\int 5x^2 + \frac{3}{x} - \frac{1}{3\sqrt{x^2}} \, dx \]

\[= \int 5x^2 \, dx + \int \frac{3}{x} \, dx - \int \frac{1}{3\sqrt{x^2}} \, dx \]

\[= 5 \int x^2 \, dx + 3 \int \frac{1}{x} \, dx - \int \frac{1}{3\sqrt{x^2}} \, dx \]

\[= 5 \left[\frac{x^3}{3} + C_1 \right] + 3 \ln |x| + C_2 - \int \frac{1}{3\sqrt{x^2}} \, dx \]

Recall, \(\int \frac{1}{x} \, dx = \ln |x| + C \)

\[= \frac{5x^3}{3} + C_1 + 3 \ln |x| + 3C_2 - \int \frac{1}{3\sqrt{x^2}} \, dx \]

\[= \frac{5x^3}{3} + C_1 + 3 \ln |x| + 3C_2 - \left[\frac{x^{-2/3} + 1}{2} + C_3 \right] \]

\[= \frac{5x^3}{3} + C_1 + 3 \ln |x| + 3C_2 - \frac{3}{3\sqrt{x}} - C_3 \]

Rewrite all constants as one constant

\[= \frac{5x^3}{3} + 3 \ln |x| - 3\sqrt[3]{x} + C \]

\[\text{where } C = C_1 + 3C_2 - C_3, \]

\[\text{an arbitrary constant} \]

Check, \[\left[\frac{5x^3}{3} + 3 \ln |x| - 3\sqrt[3]{x} + C \right]' = \int 5x^2 + \frac{3}{x} - \frac{1}{3\sqrt{x^2}} \, dx \]

\[= 5x + \frac{3}{x} - \frac{1}{3\sqrt{x^2}} \] \(\checkmark\)
2. \[\int \frac{x+1}{\sqrt{x}} \, dx \]

\[= \int (x+1)(x^{-1/2}) \, dx \]

\[= \int x^{1/2} - x^{-1/2} \, dx \]

\[= \int x^{1/2} \, dx + \int x^{-1/2} \, dx \]

\[= \frac{x^{(1/2+1)}}{1/2 + 1} + C_1 + \frac{x^{(-1/2+1)}}{-1/2 + 1} + C_2 \]

\[= \frac{x^{3/2}}{3/2} + C_1 + \frac{x^{1/2}}{1/2} + C_2 \]

\[= \frac{2x^{3/2}}{2} + C_1 + 2\sqrt{x} + C_2 \]

\[= \frac{2}{3} (x^{3/2}) + 2\sqrt{x} + C \]
3. \[\int \frac{\sin x}{\cos^2 x} \, dx \]
\[= \int \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} \, dx \]
\[= \int \tan x \cdot \sec x \, dx \]
\[= \sec x + C \]

4. \[\int (x^2+1)^2 + 3\sqrt{t}(t-4) \, dt \]

Rewrite/Expand

\[= \int (x^4+2x^2+1 + 3\sqrt{t} \cdot (t - 3\sqrt{t} \cdot 4 \, d \sqrt{t}) \]

Simplify

\[= \int (x^4+2x^2+1 + (4^{1/3} - 4^{1/3} + 1) \, d \sqrt{t}) \]

Integrate

\[= \frac{(x+1)^{2+1}}{4+1} + \frac{2^{2+1}}{2+1} + t + \left(4^{1/3} - 4^{1/3} + 1 \right) \]

\[= \frac{5^5}{5} + \frac{2^{4/3}}{3} + t + \frac{3^{7/3}}{7} - 3^{4/3} + C \]
Definition 5.1.7.

We need additional information to find particular solutions. Given \(y = f(x) \) for one value of \(x \) is an initial condition that will grant such a solution.

Example 5.1.8

1. Find the particular solution that satisfies the differential equation and the initial condition.

 (a) \(f'(x) = e^x \), \(f(0) = 3 \)

 Initial Condition

 Find \(f(x) \).

 \[f(x) = \int f'(x) \, dx \]
 \[= \int e^x \, dx = e^x + c \]

 Find \(c \), when \(f(0) = 3 \)

 \[f(x) = e^x + c \]
 \[f(0) = 3 = e^0 + c \]
 \[3 = 1 + c \]
 \[c = 2 \]

 Substitute \(c \) into \(f(x) \)

 Since \(f(x) = e^x + c \) and \(c = 2 \) for \(f(0) = 3 \),

 \[f(x) = e^x + 2 \]
2. A ball is thrown upward with an initial velocity of 64 feet per second from an initial height of 80 feet. Use \(a(t) = -32 \) ft/s^2 as the acceleration due to gravity.

(a) Find the position function giving the height \(s \) as a function of time \(t \).

Recall, \(s'(t) = v(t) \)
\(s''(t) = v'(t) = a(t) \)

So \(v(t) = \int a(t) \, dt \)
\[= \int -32 \, dt \]
\[v(t) = -32t + c \]

Since initial velocity \(v(t=0) = 64 \) ft/s,
\[v(0) = 64 = -32(0) + c \]
\[c = 64 \]

Then \(v(t) = -32t + 64 \).

Find \(s(t) \)
\[s(t) = \int v(t) \, dt \]
\[= \int -32t + 64 \, dt \]
\[= -16t^2 + 64t + c \]

Since initial height \(s(t=0) = 80 \) feet,
\[s(0) = 80 \]
\[80 = -16(0)^2 + 64(0) + c \]
\[c = 80 \]

Then \(s(t) = -16t^2 + 64t + 80 \).
Example 5.1.2.
2. cont

(b) When does the ball hit the ground?
In other words, at what time \(t \), is the height \(s \) equal to zero (ground)?

Since \(s(t) = -16t^2 + 64t + 80 \), \(s(t) = 0 \) is when the ball hits the ground.

\[
0 = -16t^2 + 64t + 80 \\
0 = -16(t^2 - 4t - 5) \\
0 = -16(t - 5)(t + 1)
\]

\(t = 5 \) or \(t = -1 \)

We can't have negative time.

So after \(t = 5 \) seconds, the ball hits the ground.