One-sided limits — same as before, but we treat $x>a$ and $x<a$ separately.

\[
\lim_{x \to a^+} f(x) = L \\
\lim_{x \to a^-} f(x) = L
\]

with $x>a$, we can make $f(x)$ arbitrarily close to L by making x sufficiently close to a.

with $x<a$, we can make $f(x)$ as close to L as we like by making x sufficiently close to a.

Heaviside function

\[
H(t) = \begin{cases}
0, & t < 0 \\
1, & t \geq 0
\end{cases}
\]

\[
\lim_{t \to 0^-} H(t) = 0 \
\lim_{t \to 0^+} H(t) = 1
\]

\[
\text{Prop.} \quad \lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L.
\]
Example \(f(x) = \frac{1}{x^2} \)

Domain? - all real numbers except 0

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>-\frac{1}{2}</th>
<th>-\frac{1}{4}</th>
<th>\frac{1}{2}</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(\frac{1}{4})</td>
<td>1</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

\[\lim_{x \to 0} f(x) = \infty, \text{ so the limit DNE} \]

Continuity

Def. The function \(f \) is **continuous at the number** \(a \) means:

1. \(f(a) \) exists (\(a \) is in domain of \(f \))
2. \(\lim_{x \to a} f(x) \) exists
3. \(\lim_{x \to a} f(x) = f(a) \)

Ex. \(H(t) \)

\[H(t) = \begin{cases} 0, & t \leq 0 \\ 1, & t > 0 \end{cases} \]

\(H(t) \) is continuous at each \(a \neq 0 \).

\(H(t) \) is not continuous at \(t = 0 \) because

\[\lim_{t \to 0^-} H(t) \neq \lim_{t \to 0^+} H(t), \text{ so } \lim_{t \to 0} H(t) \text{ DNE} \]
Ex. \(f(x) = \frac{1}{x^2} \)

- \(f \) is not continuous at \(x = 0 \) because \(f(x) \) does not exist.
- \(f \) is continuous at each \(a \neq 0 \), so \(f \) is continuous on its domain.

Functions Continuous on their domains:

- **Polynomials:** \(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = P(x) \)
- **Rational functions:** \(\frac{P(x)}{Q(x)} \)
- **Power, root functions:** \(x^n, x^{1/n} \)
- **Trig functions:** \(\sin(x), \tan(x) \)
- **Exponential, logarithmic functions:** \(e^x, \log(x) \)
- **Products, quotients, sums, differences, compositions of above**

Ex. \[
\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x+1)(x-1)}{(x-1)} = \lim_{x \to 1} x + 1 = 1 + 1 = 2
\]

Ex. Evaluate the limit

\[
\lim_{x \to -4} \frac{x + \frac{1}{x}}{4 + x} = \lim_{x \to -4} \frac{x + \frac{4}{4x}}{4 + x} = \lim_{x \to -4} \frac{1}{4x} = \frac{-1}{16}
\]