Section 2.1 Quadratics

- Standard form: \(f(x) = ax^2 + bx + c \)
 - Opens upward, \(a > 0 \)
 - Axis of symmetry
 - Vertex: point where the graph intersects the axis of symmetry.
 - Opens downward, \(a < 0 \)

Vertex form of a quadratic:

\[f(x) = a(x-h)^2 + k \]

(h,k) vertex

Standard to vertex form

Complete the square

Example:

\[f(x) = x^2 - 8x + 7 \]

\[x^2 - 8x + 16 - 16 + 7 \]

\[\frac{x}{2} = -4 \Rightarrow (4, -1)^2 = 16 \]

\[f(x) = (x-4)^2 - 9 \]

Graph it

- Vertex: \((4, -9)\)
- \(a = 1\) opens up
- Axis of symmetry is \(x = -4\)

x-intercept

\[y = 0 \]

\[0 = (x-4)^2 - 9 \]

\[(x-4)^2 = 9 \Rightarrow x-4 = \pm 3 \Rightarrow x = 7, 1 \]

y-intercept

\[x = 0 \]

\[y = (0-4)^2 - 9 \]

\[y = 16 - 9 \]

\[y = 7 \]
Standard to vertex form: \(a(x-h)^2 + k \)

\[
F(x) = 2x^2 + 12x - 7
\]

\[
= 2(x^2 + 6x) - 7
\]

\[
= 2(x^2 + 6x + 9) - 7 - 18 \to 2(x + 3)^2 - 25
\]

\[
\frac{-6}{2} = 3 \to 3^2 = 9
\]

vertex: \((-3, 25)\)

\[
a = 2
\]

axis of symmetry \(x = -3 \)

- **X value** of vertex when/where the min or max occurs
- **Y value** of the vertex gives the min or max value.

Formula for vertex: \(h = \frac{-b}{2a} \) \(k = f(h) \)

\[
F(x) = 2x^2 + 12x - 7
\]

\[
h = \frac{-12}{2(2)} = \frac{-12}{4} = -3
\]

\[
k = 2(-3)^2 + 12(-3) - 7 = -25
\]

vertex: \((-3, -25)\)