Board Problems

1. \(\frac{-2}{3} x + \frac{7}{3} = -3x - \frac{2}{6} \)

\[5.3 \left(\frac{-2x + 7/3}{3} \right) = -3x - \frac{2}{6} \]

\[-2x(5) + 7(5) = -3x(5) - 2(3) \]

\[-10x + 35 = -45x - 6 \]

\[+45x \quad +45x \]

\[35x + 35 = -6 \]

\[-35 \quad -35 \]

\[35x = -41 \]

\[x = -\frac{41}{35} \]

2. \(\frac{x}{5} + \frac{8}{15} = \frac{x}{3} \)

\[5.3 \left(\frac{x}{5} + \frac{8}{15} = \frac{x}{3} \right) \]

\[3x + 8 = 5x \]

\[-2x + 8 = 0 \]

\[-2x = -8 \]

\[x = -\frac{8}{2} = -4 \]

3. \(4(y-1) - 1 = 2(2y - 3) \)

\[4y - 4 - 1 = 4y - 6 \]

\[4y - 5 = 4y - 6 \]

\[-5 \neq -6 \]

\[\text{no solution} \]

4. \(\frac{3}{y+5} = -4 \)

\[y + 5 \left(\frac{3}{y+5} = -4 \right) \]

\[3 = -4(y+5) \]

\[3 = -4y - 20 \]

\[4y = -23 \]

\[y = -\frac{23}{4} \]

5. \(x^2 - 8x + 16 = 0 \)

\[x^2 - 8x + 16 = 0 \]

\[x - 4 \]

\[(x-4)(x-4) = 0 \]

\[x = 4 \]
Solving Quadratic Equations by factoring (must be in standard form)

ex. \(x^2 - 5x + 6 = 0 \)

\(a = 1 \)

\(1 \cdot 6 \)
\(2 \cdot 3 \)
\(1 \cdot 6 \cdot -2 \cdot 3 \)

which factors can I add up to get \(-5\)

\((x-2)(x-3) = 0 \)
\(x-2 = 0 \) and \(x-3 = 0 \)
\(x = 2 \)
\(x = 3 \)

* Now if \(a \neq 1 \)

ex. \(2x^2 = 6x + 3 \)

\(2x^2 - 5x - 3 = 0 \) (standard form)

\(2x \cdot -3 \)
\(1 \cdot -3 \)

\(\rightarrow \) Take factors one from each set multiply and add. To see which one gives you

\(2x(-1) + x(3) = -2x + 3x = x \) \[\text{no} \]
\(2x(3) + x(-1) = 6x - x = 5x \) \[\text{no} \]
\(2x(1) + x(-3) = 2x - 3x = -x \) \[\text{no} \]
\(2x(-3) + x(1) = -6x + x = -5x \) \[\text{yes} \]

keep in mind we need to multiply \(2x(-3) \)
so when you write factors

\((2x) \cdot (-3) \)

for sure they will multiply if set up this way

\((2x+1)(x-3) = 0 \)
\(2x+1 = 0 \)
\(x-3 = 0 \)
\(2x = -1 \)
\(x = -\frac{1}{2} \)
\(x = 3 \)
Same example as before but another method.

\[2x^3 - 5x - 3 = 0 \]

\[-6x^2 \]
\[-x \]
\[6x \]
\[x = -6x \]

\[2x^2 - 6x + x - 3 = 0 \]
\[(2x^2 - 6x) + (x - 3) = 0 \]
\[2x(x - 3) + 1(x - 3) = 0 \]
\[(2x + 1)(x - 3) = 0 \]
\[x = -\frac{1}{2}, x = 3 \]

Solving Quadratics by completing the square

Example 1

\[x^2 - 8x + 7 = 0 \]
\[x^2 - 8x + \square = -7 \]
\[-\frac{8}{2} = -4 \]
\[(-4)^2 = 16 \]

\[x^2 - 8x + 16 = -7 + 16 \]
\[(x - 4)^2 = 9 \]
\[\pm \sqrt{(x - 4)^2} = \pm \sqrt{9} \]
\[x - 4 = \pm 3 \]
\[x = 4 \pm 3 \]
\[x = 4 + 3 \text{ and } x = 4 - 3 \]
\[x = 7 \quad \text{and} \quad x = 1 \]

Example 2

\[x^2 + 10x - 13 = 0 \]
\[x^2 + 10x + \square = 13 \]
\[\frac{10}{2} = 5 \quad (5)^2 = 25 \]

\[x^2 + 10x + 25 = 13 + 25 \]
\[(x + 5)^2 = 38 \]
\[\sqrt{(x + 5)^2} = \pm \sqrt{38} \]
\[x + 5 = \pm \sqrt{38} \]
\[x = -5 \pm \sqrt{38} \]
\[x = -5 + \sqrt{38} \text{ and } x = -5 - \sqrt{38} \]
Solve Quadratics by the quadratic formula

formula \(x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \)

Example

\[3x^2 - 5x + 2 = 0 \]

\(a = 3 \quad b = -5 \quad c = 2 \) \(\Rightarrow \) \(x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(2)}}{2(3)} \)

\[x = \frac{5 \pm \sqrt{25 - 24}}{6} = \frac{5 \pm 1}{6} \]

\[x = \frac{5 + 1}{6} \quad \text{and} \quad x = \frac{5 - 1}{6} \]

\(x = 1 \quad \text{and} \quad x = \frac{2}{3} \)

When solving quadratics they can have

- 2 real solutions \((b^2-4ac > 0)\)
- 1 real solution \((b^2-4ac = 0)\)
- 2 imaginary solutions \((b^2-4ac < 0)\)

Ex

\[5x^2 - 7x + 2 = 0 \]

What kind of solutions?

\(a = 5 \quad b = -7 \quad c = 2 \)

\(b^2 - 4ac \)

\((-7)^2 - 4(5)(2) \)

\[49 - 40 = 9 \]

\(9 > 0 \) (2 real solutions)
How to solve for x and y intercepts

To find x-intercept
Let \(y = 0 \)

\[y = 2x + 5 \]

\[0 = 2x + 5 \]
\[-2x = 5 \]
\[x = \frac{5}{-2} \]
\[\left(-\frac{5}{2}, 0 \right) \]

To find y-intercept
Let \(x = 0 \)

\[y = 2(0) + 5 \]
\[y = 0 + 5 \]
\[y = 5 \]
\[\left(0, 5 \right) \]