Techniques in Factoring Polynomials:

I. Always factor out the largest common factor first.

\[2x^2 (3x^2 - 5x + 7) \]
\[= 6x^4 - 10x^3 + 14x^2 \]
\[= 2x^2 (3x^2 - 5x + 7) \]

A. \[6n^3 + 24n^2 + 12n \]
\[= 6n(n^2 + 4n + 2) \]

B. \[a(b-2) + c(b-2) \]
\[= (b-2)(a+c) \]

\[2 \cdot 3 = 6 \text{ factors} \]

C. \[18a^2b - 15ab^2 \]
\[= 3ab(6a - 5b) \]
II. Consider factoring by grouping. (4 terms)

A. \(x^3 + 3x^2 + 6x + 18 \)

\[= x^2 + 3x^2 + 6x + 18 \]
\[= x^2(x+3) + 6(x+3) \]
\[= (x+3)(x^2+6) \]

1. Group the term into pairs.
2. Factor out the common factor from each pair.
3. Factor out common binomial factor.

B. \(2x^3 - 3x^2 + 6x - 9 \)

\[= 2x^3 - 3x^2 + 6x - 9 \]
\[= x^2(2x-3) + 3(2x-3) \]
\[= (2x-3)(x^2+3) \]

C. \(a^3 - 3a^2 - 2a + 6 \)

\[= a^3(a-3) - 2(a-3) \]
\[= (a-3)(a^2 - 2) \]

or, \(a^3 - 2a - 3a^2 + 6 \)

\[= a(a^2 - 2) - 3(a^2 - 2) \]
\[= (a^2 - 2)(a - 3) \]
Commutative property:

Order doesn't matter in multiplication or add.