Ex. Find constants a, b so that $f(x)$ is continuous on \mathbb{R},

\[
\begin{align*}
 f(x) &= \begin{cases}
 -2 & x \leq -1 \\
 ax + b & -1 < x < 3 \\
 -2 & x \geq 3
 \end{cases}
\end{align*}
\]

* need to check continuity @ $x=-1, 3$

So we need

\[
\begin{align*}
 \lim_{x \to -1^-} f(x) &= f(-1) \\
 \lim_{x \to -1^+} f(x) &= f(-1) \\
 \lim_{x \to 3^-} f(x) &= f(3) \\
 \lim_{x \to 3^+} f(x) &= f(3)
\end{align*}
\]

\[
\begin{align*}
 \lim_{x \to -1} f(x) &= f(-1) = 2 \\
 \lim_{x \to 3} f(x) &= f(3) = -2
\end{align*}
\]

\[
\begin{align*}
 \lim_{x \to -1^+} (ax + b) &= -a + b = 2 \\
 \lim_{x \to 3^-} (ax + b) &= 3a + b = -2
\end{align*}
\]

\[
\begin{align*}
 b &= a + 2 = (1) + 2 = 1 \\
 a + 2 &= 4a + 2 = 4(-1) + 2 = -2
\end{align*}
\]

So

\[
\begin{align*}
 f(x) &= \begin{cases}
 2, & x \leq -1 \\
 1-x, & -1 < x < 3 \\
 -2, & x \geq 3
 \end{cases}
\end{align*}
\]

Intermediate Value Theorem

If f is continuous on $[a,b]$, $f(a) \neq f(b)$, and $f(c) \leq k < f(b)$, then there is a number c in $[a,b]$ such that $f(c) = k$.

Ex. Show that $f(x) = x^3 + 2x - 1$ has a zero on $[0,1]$.

\[
\begin{align*}
 f(0) = 0^3 + 2(0) - 1 &= -1 \\
 f(1) = 1^3 + 2(1) - 1 &= 2
\end{align*}
\]

$f(x)$ is a polynomial

f is continuous

$0 \in (-1,2)$, so by IVT there exists $c \in [0,1]$ such that $f(c) = 0$.
Infinite Limits

An infinite limit is a limit in which \(f(x) \) increases or decreases without bound as \(x \) approaches \(c \): \(\lim_{x \to c} f(x) = \infty \).

\(\lim_{x \to c} f(x) = \infty \) does not mean that the limit exists. It tells you how the limit fails to exist by denoting the unbounded behavior of \(f(x) \) as \(x \) approaches \(c \).

\[\frac{1}{x} \]

\[\lim_{x \to 1^-} g(x) = -\infty \]
\[\lim_{x \to 1^+} g(x) = \infty \]

The line \(x = c \) is a vertical asymptote if at least one of the following is true:

\[\lim_{x \to c} f(x) = \pm \infty \]
\[\lim_{x \to c^+} f(x) = \pm \infty \]
\[\lim_{x \to c^-} f(x) = \pm \infty \]

Ex: Find any vertical asymptotes.

1) \(g(x) = \cot(x) = \frac{\cos(x)}{\sin(x)} \)
 \[\sin(x) = 0 \]
 \(x = k\pi, \ k \in \mathbb{Z} \) (vertical asymptotes here)

2) \(h(x) = x^2 e^{-x} = \frac{x}{e^x} \)
 \(e^x = 0 \)
 \(x = \ln(0) = \text{DNE} \)
 \(x^2 - 4 = 0 \)
 \(x = \pm \sqrt{4} = \pm 2 \)

3) \(s(x) = \ln(x^2 - 4) \)
 no vertical asymptotes
Since we can factorize the numerator to cancel out the zero in the denominator at \(x = 5\), this point is a removable discontinuity, not a vertical asymptote.

Then let \(c\) and \(L\) be real numbers and let \(f\) and \(g\) be functions such that

\[
\lim_{x \to c} f(x) = \infty \quad \text{and} \quad \lim_{x \to c} g(x) = L
\]

Then:

1. \(\lim_{x \to c} [f(x) \pm g(x)] = \infty\)
2. \(\lim_{x \to c} [f(x)g(x)] \begin{cases} \infty & \text{if } g(x) \to 0 \\ -\infty & \text{if } L \neq 0 \end{cases}\)
3. \(\lim_{x \to c} \frac{g(x)}{f(x)} = 0\)

Ex. \(\lim_{x \to 1^-} \frac{x^2 - 3x}{x - 1} \quad \text{constant neg #}
\quad \text{something goes to 0}
\quad \rightarrow -\infty\)
\((4)^2 - 3(4) = 16 - 12 = 4\)

Ex. \(\lim_{x \to 0} \left[1 + \frac{1}{x^2}\right] = \infty\)

Ex. \(\lim_{x \to -3^+} \sqrt{x^2 - 9} = \frac{-x}{x - 3} = \lim_{x \to -3^+} \frac{-1}{x - 3} \quad \text{something goes to 0} = -\infty\)

Recall: \(\lim_{x \to 0} f(x) = \infty\) really means that the limit does not exist because \(f(x)\) increases or decreases without bound.

Ex. \(\lim_{x \to 0^-} \ln|\cos(x)| = \text{DNE}\)
\(\cos(\frac{\pi}{2}) = 0\)

Ex. \(\lim_{x \to 0^+} \left(\frac{x}{x^2}\right) = 0 - \infty = -\infty\)