Derivatives of Inverse Functions

Let f be a function whose domain is an interval I. If f has an inverse function f^{-1}, then:

1) If f is continuous on its domain, then f^{-1} continuous on its domain.

2) If f is differentiable on an interval containing c and $f'(c) \neq 0$, then f^{-1} is differentiable at $f(c)$.

Moreover,
\[
(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}
\]

Ex.
Let $f(x) = \frac{1}{4}x^3 + x - 1$.

1) \(f^{-1}(3) = ? \)

2) \((f^{-1})'(3) = ? \)

1) \(f^{-1}(3) = a \iff 3 = f(a) \)

\[
\frac{1}{4}x^3 + x - 1 = 3 \\
x^3 + 4x = 16 \\
x = 2 = f^{-1}(3)
\]

2) \((f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))} = \frac{1}{f'(2)} = \frac{1}{4} \)

\(f'(x) = \frac{3}{4}x^2 + 1 \)

\(f'(2) = \frac{3}{4}(4) + 1 = 3 + 1 = 4 \)