Slope of tangent line

\[m_{PA} = \frac{f(b) - f(a)}{b - a} \]

§ 2.2 Finding Limits Graphically and Numerically

Def: Suppose \(f(x) \) is defined when \(x \) is near \(a \), but not necessarily at \(a \).

We say the limit of \(f(x) \) is \(L \) as \(x \) approaches \(a \), and we write this as

\[\lim_{x \to a} f(x) = L \]

provided we can get \(f(x) \) as close as we want to \(L \) for all \(x \) sufficiently close to \(a \), without letting \(x = a \).

Ex 1) \(\frac{1}{x} \) \:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \frac{1}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\lim_{x \to 2} (4x + 5) = 11 \]

\[
\begin{array}{c|c|c|c|c|c}
\hline
x & -2.1 & -2.01 & -2.001 & -2.0001 & -2 \\
\hline
f(x) & -3.4 & -3.04 & -3.004 & -3.0004 & -3 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
\hline
x & -2 & -1.9999 & -1.999 & -1.99 & -1.9 \\
\hline
f(x) & -2.9996 & -2.996 & -2.96 & -2.6 \\
\hline
\end{array}
\]
Ex. 2 \[\lim_{{x \to 0}} \frac{x}{\sqrt{x+1} - 1} = 2 \]

<table>
<thead>
<tr>
<th>x</th>
<th>-0.01</th>
<th>-0.001</th>
<th>0</th>
<th>0.0001</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>1.99999</td>
<td>1.999999</td>
<td>2.00001</td>
<td>2.00005</td>
<td></td>
</tr>
</tbody>
</table>

Ex. 3 \[\lim_{{x \to 0}} \frac{|x|}{x} = \text{DNE} \]

Ex. 4 \[\lim_{{x \to 0}} \frac{1}{x} = \text{DNE} \]

Ex. 5 \[\lim_{{x \to 0}} \frac{1}{x^2} = \text{DNE (\infty)} \]

Ex. 6 \[\lim_{{x \to 0}} \sin \left(\frac{1}{x} \right) \]

<table>
<thead>
<tr>
<th>x</th>
<th>(\frac{2}{\pi})</th>
<th>(\frac{2}{3\pi})</th>
<th>(\frac{2}{5\pi})</th>
<th>(\frac{2}{7\pi})</th>
<th>(\frac{2}{9\pi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin \frac{1}{x})</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
Evaluating limits Analytically

Some basic limits:

\[\lim_{x \to c} a = a \]

\[y = f(x) = a \]

\[\lim_{x \to c} x = c \]

\[y = f(x) = x \]

Properties of limits:

1) \[\lim_{x \to c} a \cdot f(x) = a \cdot \lim_{x \to c} f(x) = a \cdot L \] —— scalar multiple

2) \[\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x) = L \pm K \] —— sum or difference

3) \[\lim_{x \to c} [f(x) \cdot g(x)] = \left[\lim_{x \to c} f(x) \right] \cdot \left[\lim_{x \to c} g(x) \right] = L \cdot K \] —— product

4) \[\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{K} \quad K \neq 0 \] —— quotient

5) \[\lim_{x \to c} (f(x))^n = \left[\lim_{x \to c} f(x) \right]^n = L^n \] —— power