example: \(\cos \frac{\pi}{2} - \csc \left(\frac{\pi}{2} \right) \)

find exact value

\(\cos \frac{\pi}{2} = 0 \)

\(\csc = \frac{1}{\sin \frac{\pi}{2}} = \frac{1}{1} = -1 \)

\[0 - (-1) = 1 \]

\(\cos \frac{\pi}{2} + \csc \frac{\pi}{2} \)

\[0 + \frac{1}{1} = 1 \]

\[y = \tan(2x) - 2 \sin(3 \pi x) \]

\(T = \frac{2\pi}{\omega} \)

\[T = \frac{2\pi}{3\pi} = \frac{2}{3} \]
\[y = 4 \tan(2x) \]

\[\tan A = y \]

\[T = \frac{\pi}{\omega} \]

\[T = \frac{\pi}{2} \]

\[\cos \theta = -\frac{3}{5} \]

\[\cos^2 \theta + \sin^2 \theta = 1 \]

\[\sin \theta = 1 - \frac{9}{25} = \frac{16}{25} = \frac{4}{5} \]

\[\tan \theta = -\frac{4/5}{-3/5} = \frac{4}{3} \]

\[\sec \theta = \frac{1}{\cos \theta} = -\frac{5}{3} \]

\[\csc \theta = \frac{1}{\sin \theta} = -\frac{5}{4} \]

\[\cot \theta = \frac{1}{\tan \theta} = \frac{3}{4} \]
\[
\tan \theta = \frac{a}{b} = \frac{3}{\sqrt{3}} = \sqrt{3} = \tan 60°
\]

\[\sqrt{3} + 3 = a\]
\[2 + 0 = a\]
\[2\sqrt{3} = a\]
\[a = \sqrt{12} = 2\sqrt{3}\]

EX: Find two negative, positive angles \((\pm \theta)\) in radians for the point \((-\frac{1}{2}, \frac{\sqrt{3}}{2})\).
Example: There are 36 km from the highway one see after trucks passed. The angle θ between highway & line of the observation is measured.

\[\theta = 15^\circ \]

How fast truck traveling?

\[\tan 15^\circ = \frac{30}{d} \]

\[d = \frac{30}{\tan 15^\circ} \]