I. V. Factorable Trinomials

* Look for two numbers whose product is a
 the last term and whose sum is the middle term. Those two numbers are your binomials.

A) \(x^2 + 7x + 12 \)
 \[\text{Sum of factors of 12:} \ 3, 4 \]
 \[(x+3)(x+4) \]

B) \(x^2 - 12x + 20 \)
 \[\text{Factors of 20:} \ -10, -2 \]
 \[(x-10)(x-2) \]

C) \(x^2 - 2x - 35 \)
 \[\text{Factors of 35:} \ 5, -7 \]
 \[(x+5)(x-7) \]

D) \(x^2 + 4x - 12 \)
 \[\text{Sum of factors of -12:} \ 6, -2 \]
 \[(x+6)(x-2) \]

E) \(x^2 + 2x + 1 \)
 \[(x+1)^2 \]

F) \(x^2 - 8x + 16 \)
 \[(x-4)^2 \]

Factor a perfect trinomial

G) \(9y^2 - 22y + 128 \)
 Factor out 2
 \[2(4y^2 - 112y + 64) \]
 \[2(7y - 8)^2 \]

H) \(x^2 + 3x + 5 \)
 * There are no integers whose product of 5 and sum of 3. Therefore, it's prime.