1. Factor the following binomial if possible.

$8y^3 + 125x^6$

Signs that this can be factored as sum of cubes:
1. y^3 and x^6 are perfect cubes.
2. 8 and 125 are perfect cubes.
3. It's the sum of two perfect cubes.

\[
\sqrt[3]{8}y^3 = \sqrt[3]{8} \cdot \sqrt[3]{y^3} = 2y
\]

\[
\sqrt[3]{125}x^6 = \sqrt[3]{125} \cdot \sqrt[3]{x^6} = 5x^2
\]

\[
8y^3 + 125x^6 = (2y + 5x^2)(4y^2 - 10xy^2 + 25x^4)
\]

To confirm this:

\[
\begin{align*}
(2y + 5x^2)(4y^2 - 10xy^2 + 25x^4) &= (2y)(4y^2) + (2y)(10xy^2) + (2y)(25x^4) \\
&\quad + (5x^2)(4y^2) - (5x^2)(10xy^2) + (5x^2)(25x^4) \\
&= 8y^3 + 20y^2x^2 + 50y^4 + 20x^2y^2 - 50xy^4 + 125x^6
\end{align*}
\]

\[
= 8y^3 + 125x^6.
\]
Factorable Trinomials

\[x^2 + bx + c \].

To factor this trinomial, start by looking for 2 numbers that multiply to get \(c \), and locate the pair that add to \(b \).

Ex. 1 \(x^2 + 7x + 12 \)

\[= (x+3)(x+4) \].

Ex. 2 \(x^2 + 9x + 14 \)

\[= (x+2)(x+7) \].

Ex. 3 \(x^2 - 12x + 20 \)

\[= (x-2)(x-10) \].

Ex. 4 \(x^2 - 2x - 35 \)

\[= (x+5)(x-7) \].

Ex. 5 \(x^2 + 4x - 12 \)

\[= (x-2)(x+6) \].

Ex. 6 \(x^2 + 2x + 1 \)

\[= (x+1)^2 \].

Ex. 7 \(x^2 - 8x + 16 \)

\[= (x-4)^2 \].

Ex. 8 \(x^2 + 3x + 2 \)

\[\text{is prime, no factorization possible.} \]
Factorable Trinomials

\[ax^2 + bx + c. \]

To factor this trinomial, follow these steps:

1. multiply \(a \cdot c \)

2. find a pair of numbers that multiply to get \(a \cdot c \) and add to give \(b \).

3. replace \(b \) with the pair of numbers that you found in step two.

4. you have four terms now, so factor by grouping.

Example 1: \(6x^2 + 19x + 15 \)

\[
= 6x^2 + 9x + 10x + 15 \\
= (6x^2 + 9x) + (10x + 15) \\
= 3x(2x + 3) + 5(2x + 3) \\
= (2x + 3)(3x + 5) \\

\]

Example 2: \(20x^2 - 17x + 3 \)

\[
= 20x^2 - 12x - 5x + 3 \\
= (20x^2 - 5x) - (12x - 3) \\
= 5x(4x - 1) - 3(4x - 1) \\
= (4x - 1)(5x - 3) \\
= 20 \cdot 3 = 60. \\
= (-12, -5)
(1) Factor the following polynomial.

\[6x^4y + 9x^3 - 12x^3y\]

\[= 3x^3(2x^2y + 3 - 4y)\]

(2) Consider the following polynomial

\[4y^{11} - y^{12} + 1 + 6y^8\]

1. Express the polynomial in descending order

\[-y^{12} + 4y^{11} + 6y^8 + 1\]

2. Degree?

12

3. Leading coefficient

-1