Chapter 2 ATOMS, MOLECULES, & IONS

Atomic Theory & Atomic Structure

Periodic Table of the Elements

Naming Simple Compounds

Chemistry & The Elements

- Chemistry Is The Study Of _____
 - And The _____ It Undergoes
- What Is MATTER Composed Of?
 - Matter Is Formed From One Or More

Of The _____

What Are The Elements Composed Of?

• Elements Are _____ Substances That Can Not Be Broken Down Chemically

• How do we know that ?

• Experiment!

How Do We Study Chemistry?

THE SCIENTIFIC METHOD

- 1. Experiment
- 2. "Explain" Experiment
- 3. Do More Experiments to Test "Explanation"

Experiments and Observations

- Mass is neither ____ nor ___ in ordinary chemical reactions.
- Different samples of a pure chemical substance always contain the same proportion of elements by ______.
- If two elements combine to form different substances, the mass ratios are small, whole number _____ of each other.

Atomic Theory & Atomic Structure

The key concept in chemistry is that
_____ is composed of tiny
particles called _____.

First Atomic Theory

- John Dalton (1766 1844) _____ the
 Theory of Matter in 1808.
- What does postulated mean?
 - 1. To assume to be true
 - 2. To take for granted

Postulates of Dalton's Atomic Theory

- 1. All matter (elements) is composed of tiny particles called _____.
- 2. All atoms of a given element have _____ properties and atoms of different elements have different properties.

Dalton

3. Atoms of different elements combine in ratios of small _____ numbers when forming compounds.

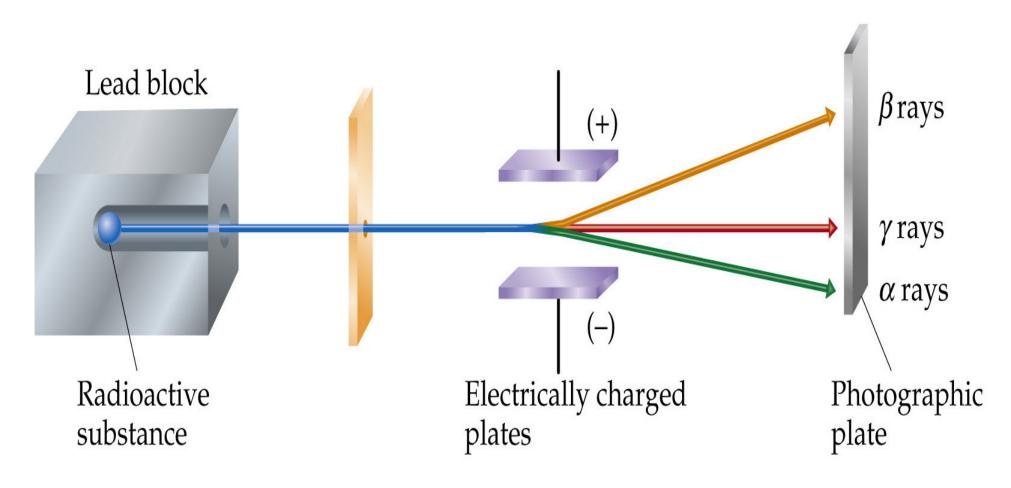
4. Chemical reactions only rearrange the way atoms are combined; the atoms
 themselves are _____ changed.

Why is Dalton's theory significant?

Dalton's theory explains The Laws of

- Conservation of _____
- Definite _____
- Multiple _____

Experiments and Observations


Madam and Pierre Curie discovered some materials

emitted high energy radiation

RADIATION

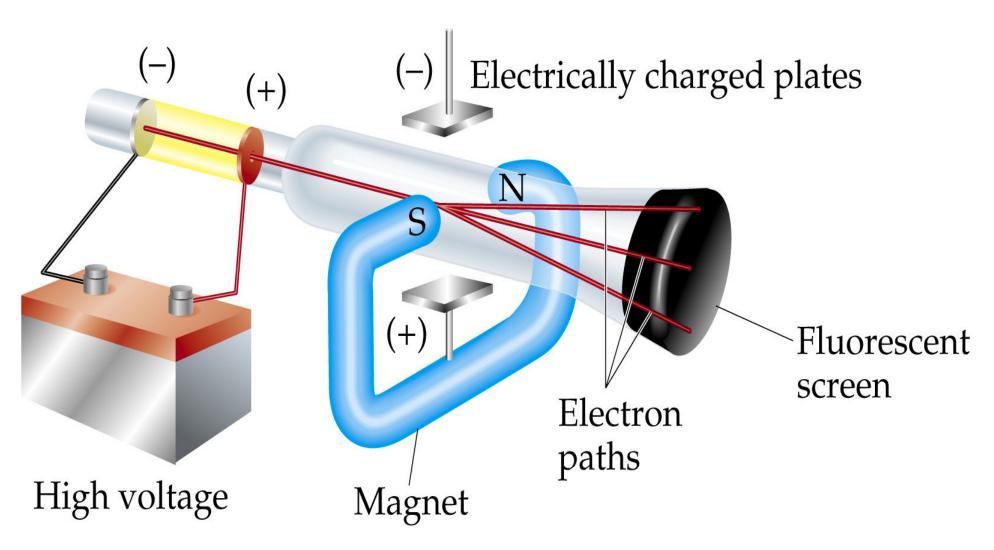
- 1. Which elements are radioactive?
- 2. What does radioactive mean?
- 3. What are the types of radiation?
- 4. How do the types of radiation differ?

Types of Radiation alpha(α) beta(β) gamma(γ)

Types of Radiation alpha(α) beta(β) gamma(γ)

____ and ___ radiation are both
affected by an electric field
while radiation is unaffected

The Discovery of Atomic Structure


- 1. Thomson
- 2. Millikan
- 3. Rutherford

THOMSON'S EXPERIMENTS

Discovered

Electrons are also called Cathode Rays

Cathode Rays and Electrons

MILLIKAN'S OIL DROP EXPERIMENT

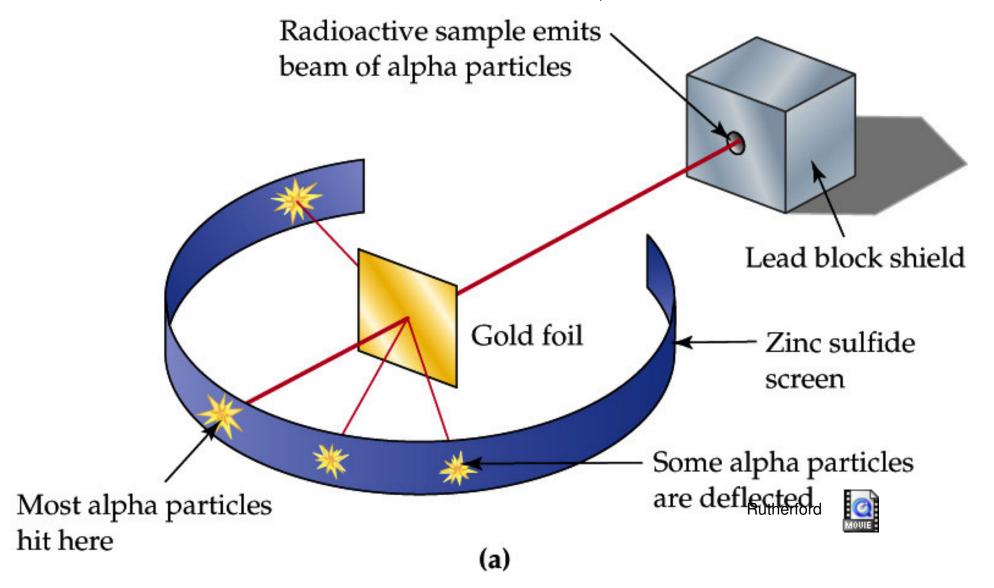
Determined the

• The _____ on an electron

and

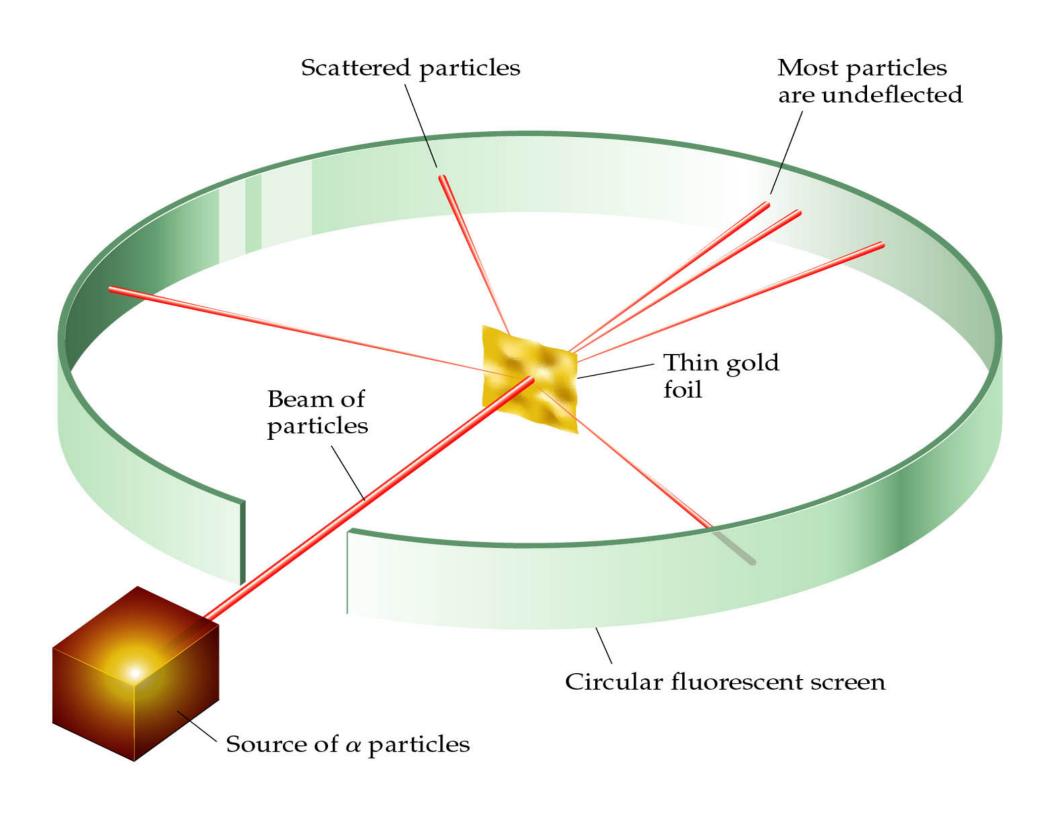
• The _____ of the electron

RUTHERFORD'S EXPERIMENTS

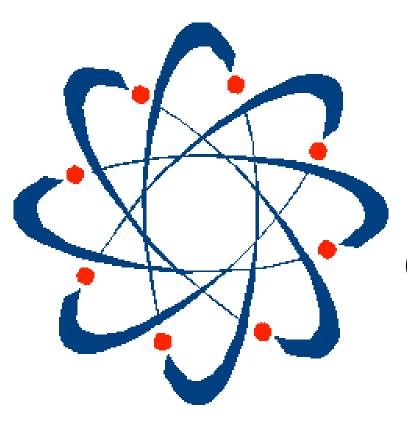

Determined the

of ATOMS

PROTONS and NEUTRONS


Discovery of Nucleus (Rutherford,

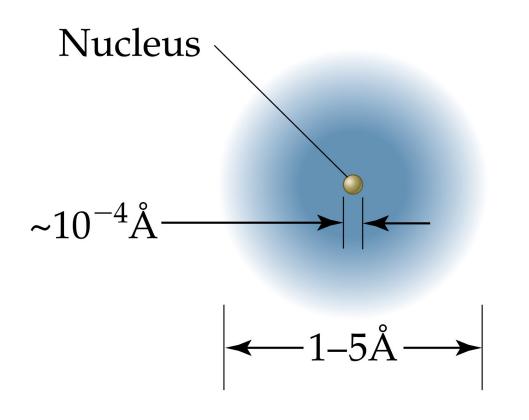
1871 - 1937)



CONCLUSION OF RUTHERFORD'S EXPERIMENTS

Gold Foil is Mostly

The Modern View of Atomic Structure


The Nucleus, containing

(protons an neutrons)
is surrounded

by _____

Atomic Number (Z): Number of protons **Mass Number (A):** Number of protons + neutrons

What is A

1 A =
1 x 10⁻¹⁰
meters

Weight of ATOMIC PARTICLES

Name	Charge	Mass	s (grams)
• Proton	+1	1.66	x 10 - 24
 Neutron 	0	1.67	x 10 - 24
• Electron	-1	9.11	$x = 10^{-28}$

The Atomic Mass Unit (amu)

• defined as one–twelfth the mass of an atom of ${}^{12}{}_{6}\text{C}$ and is equal to $1.66054 \times 10^{-24}\text{g}$.

• Also known as the **Dalton** (**Da**)

Relative Weight of Atomic Particles

<u>Name</u>	Charge	Mass (amu)
Proton	+1	1
Neutron	0	1
Electron	-1	0

Atomic Weights

Using atomic mass units:

 $1 \text{ amu} = 1.66054 \times 10^{-24} \text{ g}$

 $1 g = 6.02214 \times 10^{23}$ amu

Atomic Mass & Molar Mass

- Atomic Mass: A weighted ______ of the isotopic masses of an element's naturally occurring isotopes.
- Molar Mass: The _____ mass of one
 ____ of any substance.

THE ATOMIC MASS SCALE

By definition mass of ${}^{12}C$ = exactly 12 amu

Using atomic mass units:

1 amu = $1.66054 \times 10^{-24} g$ 1 g = $6.02214 \times 10^{23} amu$

Then

¹H weighs 1.6735 x 10⁻²⁴ g ¹⁶O weighs 2.6560 x 10⁻²³ g

Notation For Atoms

<u>Mass Number</u> = Protons + Neutrons

Mass Number \rightarrow A

Symbol \rightarrow X

Atomic Number \rightarrow Z

<u>Atomić Number</u> = Number of Protons

Notation For Helium

4 He 2

Number of Protons? 2

Number of Neutrons? 2

Number of Electrons? 2

What is an ALPHA particle?

An α Particle is the Helium nucleus

Number of Protons?
Number of Neutrons?
Number of Electrons?

Notation For proton

Number of Protons?

Number of Neutrons?

Number of Electrons?

The Structure of Atoms

- The isotope ⁷⁵₃₄ Se is used medically for diagnosis of pancreatic disorders. How many protons, neutrons, and electrons does an atom of Selenium 75 have?
- Protons = ?....
- Neutrons = ?____
- Electrons = ?____

Notation For Sodium Ion

Symbol for sodium Na

Atomic Number 11

Number of Protons 11

Number of Neutrons Unknown

Number of Electrons 10

+1

Na

11

Notation For Chloride Ion

Symbol for Chlorine Cl

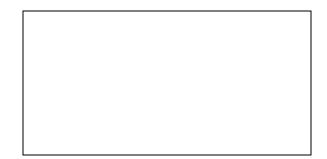
Atomic Number 17

Number of Protons 17

Number of Neutrons Unknown

Number of Electrons 18

-1


Cl

17

Identify the element that contains 47 protons and 61 neutrons.

47 protons = Atomic number

47 + 61 = 108 which is the Atomic Mass

What is the mass number of an isotope of mercury that has 122 neutrons?

- (a) 120
- (b) 80
- (c) 200
- (d) 202

ISOTOPES

Atoms with identical atomic numbers, but different mass numbers.

Isotopes of Hydrogen:	₁ ¹ H	$1^2 H$	^{3}H
Number of Protons?		·	
Number of Neutrons?			
Number of Electrons?			

Same Number of Protons, Different number of Neutrons

Isotopes of Carbon: 6 ¹² C	6 ¹³ C	6 ¹⁴ C
Number of Protons ?		
Number of Neutrons?		
Number of Electrons?		

Average Atomic Mass

Atomic weights are listed on the periodic table

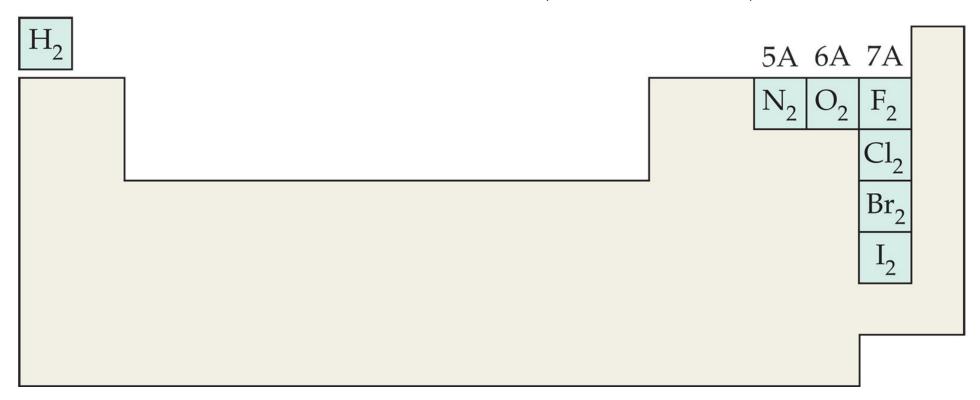
A weighted average of the isotopic masses of an element's _____ occurring isotopes

Atomic weight is also known as average atomic mass (atomic weight).

AVERAGE ATOMIC MASSES

Naturally occurring Isotopes of Carbon are ¹²C and ¹³C

98.892 % ¹²C and 1.108 % ¹³C.


AVERAGE mass of C is therefore (0.98892)(12.000) + (0.0108)(13.00335) =

??????

Atoms, Elements & Compounds

- ____ The smallest representative particle of an Element
- Are Fundamental Substances
 That Can Not Be Broken Down Chemically
- A _____ Is A PURE Substance Formed When TWO or More ELEMENTS Combine

Seven elements that occur naturally as Diatomic Molecules (two atoms)

CHEMICALS IN EVERYDAY LIFE

"Table" Salt NaCl

"Peroxide" H_2O_2

Household Ammonia NH₃(aq)

Household bleach NaClO

Baking Soda NaHCO₃

Epsom Salt MgSO₄ 7H₂O

Milk of Magnesia $Mg(OH)_2$

Vinegar $HC_2H_3O_2(aq)$

CORRECT NAMES

Sodium Chloride NaCl

Hydrogen Peroxide H_2O_2

Ammonium Hydroxide NH₃(aq)

Sodium HypoChlorite NaClO

Sodium bi Carbonate NaHCO₃

Magnesium Sulfate MgSO₄ 7H₂O

Magnesium Hydroxide $Mg(OH)_2$

Acetic Acid $HC_2H_3O_2(aq)$

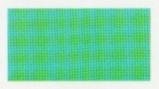
PERIODIC TABLE

Divided Into

ROWS___

& COLUMNS....__

of


METALS

METALLOIDS

NONMETALS

1 H	Periodic Table of the												2 He				
3	4	5 6 7 8 9										10					
Li	Be	ELEMENTS B C N O F											Ne				
11	12			1				TI				13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Metals

Semimetals

Nonmetals

All of the following *except* are metalloids.

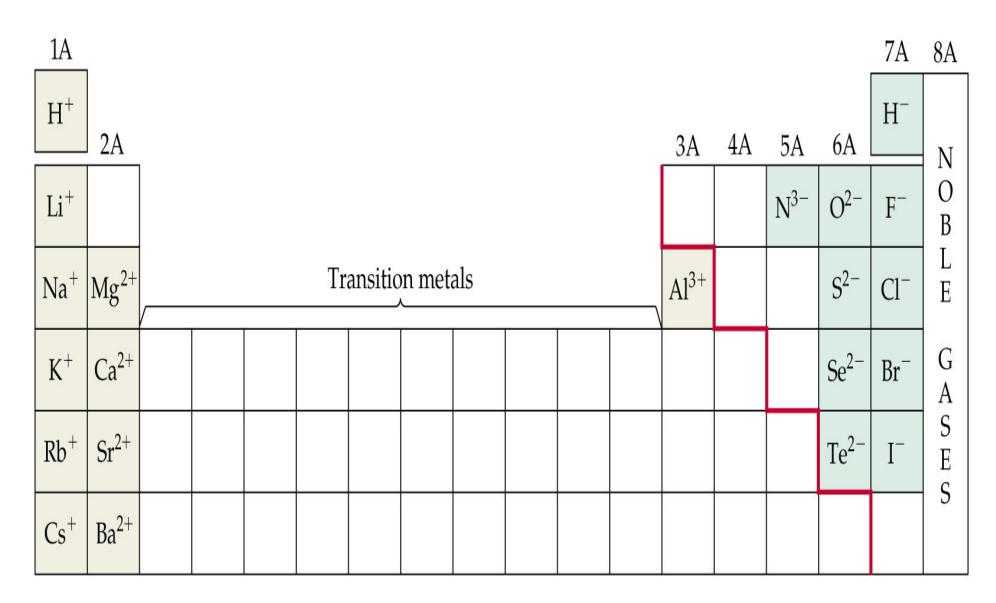
- (a)B
- (b) As
- (c) Al
- (d) Ge
- (e)Si

METALS & NON METALS

I. METALS

1. REPRESENTATIVE Metals
GROUP IA _____ Metals
GROUP IIA..... ____ Metals
2. TRANSITION Metals
II. NONMETALS

GROUP VIIA HALOGENS
GROUP VIIIANOBLE GASES


Which of the following is a metal?

- (a)S
- (b)Si
- (c)Sr
- (d)Se
- (e)P

PREDICTING IONIC CHARGE

• The number of electronic electr	rons an atom loses is
related to its	on the periodic table
metal atoms tend to cations (positive ion)	to form
nonmetal atoms tend	
form anions (negative	re ions)

Predicting Ionic Charge

Can you count to three (3)?

Now can you count to three BACKWARDS

Ions With a +1 Charge

H^{+1}	·····Hydrogen Ion
Li ⁺¹	Lithium Ion
Na^{+1}	····Sodium Ion
K^{+1}	·····Potassium Ion
Rb^{+1}	·····Rubidium Ion
Cs^{+1}	·····Cesium Ion
Ag^{+1}	·····Silver Ion
NH ₄ +1	Ammonium Ion

Ions With a +2 Charge

Be^{+2}	 Beryllium Ion
Mg^{+2}	Magnesium Ion
Ca^{+2}	·····Calcium Ion
Sr^{+2}	·····Strontium Ion
Ba ⁺²	····Barium Ion
Z n ⁺²	·····Zinc Ion

TABLE 2.4	Common	Cations
IADLL Z.4	Committee	Cations

Charge	Formula	Name	Formula	Name
1+	H ⁺ Li ⁺ Na ⁺ K ⁺ Cs ⁺ Ag ⁺	Hydrogen ion Lithium ion Sodium ion Potassium ion Cesium ion Silver ion	NH ₄ ⁺ Cu ⁺	Ammonium ion Copper(I) or cuprous ion
2+	Mg ²⁺ Ca ²⁺ Sr ²⁺ Ba ²⁺ Zn ²⁺ Cd ²⁺	Magnesium ion Calcium ion Strontium ion Barium ion Zinc ion Cadmium ion	Co ²⁺ Cu ²⁺ Fe ²⁺ Mn ²⁺ Hg ₂ ²⁺ Hg ²⁺ Ni ²⁺ Pb ²⁺ Sn ²⁺	Cobalt(II) or cobaltous ion Copper(II) or cupric ion Iron(II) or ferrous ion Manganese(II) or manganous ion Mercury(I) or mercurous ion Mercury(II) or mercuric ion Nickel(II) or nickelous ion Lead(II) or plumbous ion Tin(II) or stannous ion
3+	Al ³⁺	Aluminum ion	Cr ³⁺ Fe ³⁺	Chromium(III) or chromic ion Iron(III) or ferric ion

	F -1	Fluoride Ion
Ions	Cl ⁻¹	Chloride Ion
With	Br ⁻¹	Bromide Ion
	I -1	Iodide Ion
a	CN -1	Cyanide Ion
- 1	OH -1	Hydroxide Ion
Change	NO_3^{-1}	Nitrate Ion
Charge	$C_2H_3O_2^{-1}$	Acetate Ion

TABLE	2.5	Common	Anions
IADLL	L .J	COMMISSION	AIIIOII3

Charge	Formula	Name	Formula	Name
1-	H ⁻ F ⁻ Cl ⁻ Br ⁻ I ⁻ CN ⁻ OH ⁻	Hydride ion Fluoride ion Chloride ion Bromide ion Iodide ion Cyanide ion Hydroxide ion	C ₂ H ₃ O ₂ ⁻ ClO ₃ ⁻ ClO ₄ ⁻ NO ₃ ⁻ MnO ₄ ⁻	Acetate ion Chlorate ion Perchlorate ion Nitrate ion Permanganate ion
2-	O ²⁻ O ₂ ²⁻ S ²⁻	Oxide ion Peroxide ion Sulfide ion	CO_3^{2-} CrO_4^{2-} $Cr_2O_7^{2-}$ SO_4^{2-}	Carbonate ion Chromate ion Dichromate ion Sulfate ion
3-	N ³⁻	Nitride ion	PO ₄ ³⁻	Phosphate ion

Ions combine to form <u>NEUTRAL</u> compounds

Metals + Nonmetals

For Example NaCl Sodium Chloride and FeCl₃ Iron (III) Chloride

• Nonmetals + Nonmetals

For Example CO Carbon Monoxideand CO₂ Carbon Dioxide

formula for Sodium Chloride

Sodium ion Na 1+

Chloride ion Cl-

One Na+ and one Cl- combine to form

formula for Calcium Chloride

Calcium ion: Ca ²⁺

Chloride ion: Cl-

One Ca²⁺ and two Cl⁻ combine to form

formula for Aluminum Chloride

Aluminum ion: Al ³⁺

Chloride ion: Cl-

One Al3+ and three Cl combine to form

Nonmetals + Nonmetals

Greek prefixes such as *mono*–, *di*–, or *tri*– Are used:

CO Carbon ____oxide

CO₂ Carbon ____oxide

SO₃ Sulfur ___oxide

CCl₄ Carbon ____chloride

TABLE 2.6 Prefixes Used in Naming Binary Compounds Formed Between Nonmetals

Prefix	Meaning	
Mono-	1	
Di-	2	
Tri-	3	
Tetra-	4	
Penta-	5	
Hexa-	6	
Hepta-	7	
Octa-	8	
Nona-	9	
Deca-	10	

Naming Binary Ionic Compounds:

Identify the positive ion and then the negative ion.

- The positive ion uses its elemental name.
- The negative ion substitutes the second half of its elemental name with -ide.
- Do not use Greek prefixes such as *mono*–, *di*–, or *tri*–.

Names and Formulas of Binary Molecular Compounds

- Binary compounds have _____ elements
- The most metallic element is _____ written first (i.e., the one to the farthest left on the periodic table). Exception: NH₃.
- If both elements are in the same group, the lower one is written first.
- Greek prefixes are used to indicate the number of atoms.

ACIDS You Should Know

1. HCl (g) Hydrogen Chloride

2. HCl (aq) Hydro Chloric Acid

3. HNO₃ (aq) Nitric Acid

4. HC₂H₃O₂ (aq) Acetic Acid

5. H₂CO₃ (aq) Carbonic Acid

6. H₂SO₄ (aq) Sulfuric Acid

7. H₃PO₄ (aq) Phosphoric Acid

8. H₃BO₃ (aq) Boric Acid

Naming Inorganic Compounds

Polyatomic anions containing oxygen with additional hydrogens are named by adding hydrogen or **bi**- (one H), **di**hydrogen (two H), to the name as follows:

CO₃²- is the carbonate anion

HCO₃- hydrogen carbonate (or bicarbonate)

H₂PO₄⁻ is the dihydrogen phosphate anion.

TABLE 2.4 Some Common Oxoacids and Their Anions

Oxoacid		Oxoanion	
HNO ₂	Nitrous acid	NO ₂ -	Nitrite ion
HNO_3	Nitric acid	NO_3^-	Nitrate ion
H_3PO_4	Phosphoric acid	PO_4^{3-}	Phosphate ion
H_2SO_3	Sulfurous acid	SO_3^{2-}	Sulfite ion
H_2SO_4	Sulfuric acid	SO_4^{2-}	Sulfate ion
HClO	Hypochlorous acid	ClO-	Hypochlorite ion
HClO ₂	Chlorous acid	ClO ₂	Chlorite ion
HClO ₃	Chloric acid	ClO ₃	Chlorate ion
HClO ₄	Perchloric acid	ClO ₄	Perchlorate ion

ORGANIC COMPOUNDS

Organic chemistry

the study of the chemistry of carbon compounds

Alkanes

contain only C and H and are called _____