Chemical Kinetics Study of the TIME vs RATE

of Chemical Change

CHEMICAL KINETICS DEALS WITH

1. How FAST {Speed like miles per hour}

and

2. By what **MECHANISM** does a reaction happen?

Part I

How Fast (RATE) Does a Chemical Reaction "Go" ?

What does the speed (RATE) depend upon?

REACTION RATES

• The change in the concentration of a <u>reactant</u> or <u>product</u> with time (M/s)

for
$$A \rightarrow B$$

Rate = $-\frac{\Delta[A]}{\Delta t}$ Rate = $\frac{\Delta[B]}{\Delta t}$

Rate disappearance = Rate of formation

STOICHIOMETRY &FFECTS THE RATE

 $2A \rightarrow B$

A disappears at twice the rate B forms

Rate =
$$-\frac{1}{2} \Delta[A] = \Delta[B]$$

Rate disappearance \neq Rate of formation

For $2 N_2 O_5 \rightarrow 4 NO_2 + O_2$

If rate of decomposition of $N_2O_5 = 4.2 \times 10^{-7} \text{ M/s}$ What is the rate of APPEARANCE of (a) NO_2 ? Twice rate of decomposition = _____ M/s (b) O_2 ? ¹/₂ the rate of decomposition = _____ M/s How is the rate of the disappearance of the reactants related to the appearance of the products for

 $\mathrm{CH}_4(g)$ + $\mathrm{2O}_2(g)$ \rightarrow $\mathrm{CO}_2(g)$ + $\mathrm{2H}_2\mathrm{O}(g)$

rate = $-\frac{1}{1}\frac{\Delta[CH_4]}{\Delta t} = -\frac{1}{2}\frac{\Delta[O_2]}{\Delta t} = \frac{1}{1}\frac{\Delta[CO_2]}{\Delta t} = \frac{1}{2}\frac{\Delta[H_2]}{\Delta t}$

Consider the reaction 3A --> 2B

- The average rate of appearance of B is given by [B]/*t*.
- How is the average rate of appearance of B related to the average rate of disappearance of A?
- (a) -2[A]/3t (b) 2[A]/3t (c) -3[A]/2t(d) [A]/t (e) -[A]/t

Answer on Text Book's Web Site

THE RATES OF REACTION DEPENDS ON

- 1. Nature of *Reactants* {fixed
- 2. Concentration of *Reactants* {variable
- 3. <u>Temperature</u> {variable
- 4. <u>Etc.</u> {variable
 - <u>Catalysts</u>
 - Particle Size
 - Photochemical

The "things" that affect the rate of reaction are

Considered one at a time

I. NATURE OF REACTING SUBSTANCES

 $Zn(s) + HCl(aq) \rightarrow H_2 + ZnCl_2(aq)$ Fast Reaction

Iron "Rusts" but not very fast

 $Fe(s) + O_2 \rightarrow Slow Reaction$

Whereas Silver does not react at all

 $Ag(s) + O_2 \rightarrow No Reaction$

THE NATURE OF REACTANTS IS FIXED

II. CONCENTRATION OF REACTANTS

Reactant \rightarrow Products $R \rightarrow P$ rate $\propto [R]$ $A + B \rightarrow P + Q$ rate $\propto [A] [B]$ $A + B + C \rightarrow P + Q + Z$

rate \propto _____

RATE CONSTANT: k

A constant of proportionality between the reaction rate and the concentration of reactants.

 $R \rightarrow P$
rate $\propto [R]$
rate = k [R]

REACTION ORDER

$R \rightarrow P$ To complete the equation Concentrations are raised to a power of x rate = k [R]^X

[x is determined experimentally]

Reaction order is determined experimentally

Reaction order =

to the <u>sum</u> of the powers to which all reactant concentrations in the rate law are raised

REACTION ORDER

- Zero Order Reactions
- First Order Reactions
- Second Order Reactions
- Third Order Reactions

RATE LAW

- Rate Law: Shows the relationship of the rate of a reaction to the rate constant & the concentration of the reactants raised to some powers.
- For the general reaction: $aA + bB \rightarrow cC + dD$

rate = k $[A]^{x} [B]^{y}$

REACTION ORDER

Order = x + y

The sum of the powers to which all reactant concentrations appearing in the rate law are raised

x & y MAY OR MAY NOT BE THE STOICHIOMETRIC COEFFICIENTS

Reaction order is determined experimentally

A reaction	$A + B \rightarrow$	C	obeys the following
rate	law	Ra	$te = k[A]^2[B]$

- (a) If [A] is doubled, how will the rate change?
- (b) Will the rate constant change?
- (c) What are the reaction orders for A and B?
- (d) Overall order ?
- (e) Units of rate constant

The reaction $A + B \rightarrow C$ obeys the following rate law : Rate =k[A]²[B]

(a) What is the order of the reaction
(i) With respect to A?
(a) 1st (b) 2nd (c) 3rd
(ii) With respect to B?
(a) 1st (b) 2nd (c) 3rd
(iii) Overall order
(a) 1st (b) 2nd (c) 3rd

Rate = $k[A]^2[B]$

(b) How does the rate change if

(i) [A] is doubled ?

(a) doubles (b) triples (c) quadruples (d) no change

(ii) [B] is doubled ?

(a) doubles (b) triples (c) quadruples (d) no change

(iii) [C] is doubled ?

(a) doubles (b) triples (c) quadruples (d) no change

Method of Initial Rates

Uses Initial Rates to Determine Rate Law

Nitrogen monoxide reacts with hydrogen to form nitrogen gas and water

1st Write reaction

 $NO(g) + H_2(g) \rightarrow N_2(g) + H_2O(g)$

2nd balance reaction

 $2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$

$2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$

Write Rate Law:Rate = k $[NO]^{x}[H_{2}]^{y}$ Determine x and y using method of Initial ratesWhat can you measure INITIALLY ?How many UNKNOWNS in Rate Law?How many experiments are needed ?

$2 \operatorname{NO}(g) + 2 \operatorname{H}_{2}(g) \rightarrow \operatorname{N}_{2}(g) + 2 \operatorname{H}_{2}\operatorname{O}(g)$ Rate = k [NO]^x[H₂]^y

METHOD OF INITIAL RATES

Experiment	[NO] initial	[H] _{2initial}	Initial Rate (M/s)
1	5.0 x 10 ⁻³	2.0 x10 ⁻³	1.3 x 10 ⁻⁵
2	10.0 x 10 ⁻³	2.0 x 10 ⁻³	5.0 x 10 ⁻⁵
3	10.0 x 10 ⁻³	4.0 x 10 ⁻³	10.0 x 10 ⁻⁵

$2 \text{ NO}(g) + 2 \text{ H}_2(g) \rightarrow \text{N}_2(g) + 2 \text{ H}_2\text{O}(g)$ Rate = k [NO]^x [H₂]^y Exp 1: 1.3 x 10⁻⁵ = k (5.0x10⁻³)^x (2.0x10⁻⁵)^y Exp 2: 5.0 x 10⁻⁵ = k (10x10⁻³)^x (2.0x10⁻⁵)^y Exp 3: 10.0 x 10⁻⁵ = k (10x10⁻³)^x (4.0x10⁻⁵)^y

Experiment	[NO] initial	[H] _{2initial}	Initial Rate (M/s)
1	5.0 x 10 ⁻³	2.0×10^{-3}	1.3 x 10 ⁻⁵
2	10.0 x 10 ⁻³	2.0 x 10 ⁻³	5.0 x 10 ⁻⁵
3	10.0 x 10 ⁻³	4.0 x 10 ⁻³	10.0 x 10 ⁻⁵

$2 \operatorname{NO}(g) + 2 \operatorname{H}_{2}(g) \rightarrow \operatorname{N}_{2}(g) + 2 \operatorname{H}_{2}\operatorname{O}(g)$ Rate = k [NO]^x [H₂]^y

- Exp 1: $1.3 \times 10^{-5} = k (5.0 \times 10^{-3})^{x} (2.0 \times 10^{-5})^{y}$
- Exp 2: $5.0 \times 10^{-5} = k (10 \times 10^{-3})^{x} (2.0 \times 10^{-5})^{y}$
- Exp 3: $10.0 \times 10^{-5} = k (10 \times 10^{-3})^{x} (4.0 \times 10^{-5})^{y}$

Take RATIO of Exp 2 to Exp 1

exp2.	5.0×10^{-5}	$\frac{k}{10x10^{-3}}$	$(2.0 \times 10^{-5})^{y}$
exp1.	1.3×10^{-5}	$\frac{1}{k} (5.0 \times 10^{-3})^{x}$	$(2.0 \times 10^{-5})^{y}$

$2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$

- Exp 1: $1.3 \ge 10^{-5} = k \ (5.0 \ge 10^{-3})^{x} \ (2.0 \ge 10^{-5})^{y}$ Exp 2: $5.0 \ge 10^{-5} = k \ (10 \ge 10^{-3})^{x} \ (2.0 \ge 10^{-5})^{y}$
- $\frac{\exp 2}{\exp 1}: \frac{5.0 \times 10^{-5}}{1.3 \times 10^{-5}} = \frac{k}{k} \frac{(10 \times 10^{-3})^{x}}{(5.0 \times 10^{-3})^{x}} \frac{(2.0 \times 10^{-5})^{y}}{(2.0 \times 10^{-5})^{y}}$

$$3.9 = \frac{5.0 \times 10^{-5}}{1.3 \times 10^{-5}} = \frac{(10 \times 10^{-3})^{x}}{(5.0 \times 10^{-3})^{x}} = (2)^{x}$$

What is x? (a) 0 (b) 1 (c) 2 (d) 3

$2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$

- Exp 1: $1.3 \times 10^{-5} = k (5.0 \times 10^{-3})^{x} (2.0 \times 10^{-5})^{y}$
- Exp 2: $5.0 \ge 10^{-5} = k (10 \ge 10^{-3})^{x} (2.0 \ge 10^{-5})^{y}$
- Exp 3: $10.0 \times 10^{-5} = k (10 \times 10^{-3})^{x} (4.0 \times 10^{-5})^{y}$

Take RATIO of Exp 3 to Exp 2 to find y

 $\frac{\exp 3}{\exp 2}: \frac{10 \times 10^{-5}}{5 \times 10^{-5}} = \frac{k}{k} \frac{(10 \times 10^{-3})^{x}}{(10 \times 10^{-3})^{x}} \frac{(4.0 \times 10^{-5})^{y}}{(2.0 \times 10^{-5})^{y}}$

2 NO(g) + 2 H₂(g) \rightarrow N₂(g) + 2 H₂O(g) Exp 2: 5.0 x 10⁻⁵ = k (10x10⁻³)^x (2.0x10⁻⁵)^y Exp 3: 10.0 x 10⁻⁵ = k (10x10⁻³)^x (4.0x10⁻⁵)^y

$$\frac{\exp 3}{\exp 2} : \frac{10 \times 10^{-5}}{5 \times 10^{-5}} = \frac{k}{k} \frac{(10 \times 10^{-3})^{x}}{(10 \times 10^{-3})^{x}} \frac{(4.0 \times 10^{-5})^{y}}{(2.0 \times 10^{-5})^{y}}$$
$$2 = \frac{10 \times 10^{-5}}{5 \times 10^{-5}} = \frac{(4.0 \times 10^{-3})^{y}}{(2.0 \times 10^{-3})^{y}} = (2)^{y}$$
What is y = ? (a) 0 (b) 1 (c) 2 (d) 3

METHOD OF INITIAL RATES

 $2 \operatorname{NO}(g) + 2 \operatorname{H}_{2}(g) \rightarrow \operatorname{N}_{2}(g) + 2 \operatorname{H}_{2}\operatorname{O}(g)$ Rate = k [NO]^x [H₂]^y The order with respect to NO is 2nd order The order with respect to H₂ is 1st order Rate = k [NO]² [H₂]¹ The overall order of the reaction is 2 + 1 = 3 $2 \operatorname{NO}(g) + 2 \operatorname{H}_{2}(g) \rightarrow \operatorname{N}_{2}(g) + 2 \operatorname{H}_{2}\operatorname{O}(g)$ Rate = k [NO]² [H₂]¹ What is the rate constant ?

Exp 1: $1.3 \times 10^{-5} = k (5.0 \times 10^{-3})^2 (2.0 \times 10^{-5})^1$

- Exp 2: $5.0 \times 10^{-5} = k (10 \times 10^{-3})^2 (2.0 \times 10^{-5})^1$
- Exp 3: $10.0 \times 10^{-5} = k (10 \times 10^{-3})^2 (4.0 \times 10^{-5})^1$

Solve for k from any of the equations $k = 2.5 \times 10^4$ Units????

EXAMPLE 2 $S_2O_8^{2-}(aq) + 3 I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_3^{-}(aq)$

Rate = k $[S_2O_8^{2-}]^X [I^-]^Y$

<u>Determine</u> – the rate law – the order – and rate constant

$S_2O_8^{2-}(aq) + 3I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_3^{-}(aq)$

Experiment	$[S_2O_8^{2}]$	[_]	Initial Rate (M/s)
1	0.080	0.034	2.2 x 10 ⁻⁴
2	0.080	0.017	1.1 x 10 ⁻⁴
3	0.16	0.017	2.2 x 10 ⁻⁴

 $Rate_1 = _____$ $<math>Rate_2 = _____$ $Rate_3 = _____$

Experiment	[S ₂ O ₈ ²]	[_]	Initial Rate (M/s)
1	0.080	0.034	2.2 x 10 ⁻⁴
2	0.080	0.017	1.1 x 10 ⁻⁴
3	0.16	0.017	2.2 x 10 ⁻⁴

Divide Rate 1 by Rate 2 to find Y

 $\frac{R_1}{R_2} = \frac{k}{k} \frac{[.08]^X}{[.08]^X} \frac{[.034]^Y}{[.017]^Y} = \left[\frac{.034}{.017}\right]^Y = [2]^Y$

$$\frac{R_2}{R_1} = \frac{k}{k} \frac{[.08]^X}{[.08]^X} \frac{[.034]^Y}{[.017]^Y} = \left[\frac{.034}{.017}\right]^Y = [2]^Y$$

Now put in values for Rates:

$$\frac{R_2}{R_1} = \frac{2 \cdot 2 x 10^{-4}}{1 \cdot 1 x 10^{-4}} = 2 = [2]^{Y}$$

and guess what Y is

(a) Y = 0 (b) Y = 1 (c) Y = 2 (d) Y = 3
Experiment	[S ₂ O ₈ ²]	[_]	Initial Rate (M/s)
1	0.080	0.034	2.2 x 10 ⁻⁴
2	0.080	0.017	1.1 x 10 ⁻⁴
3	0.16	0.017	2.2 x 10 ⁻⁴

Divide Rate 3 by Rate 2 to find X

 $\frac{R_3}{R_2} = \frac{k}{k} \frac{[.16]^X}{[.08]^X} \frac{[.017]^Y}{[.017]^Y} = \left[\frac{.16}{.08}\right]^X = [2]^X$

$$\frac{R_3}{R_2} = \frac{k}{k} \frac{[.16]^X}{[.08]^X} \frac{[.017]^Y}{[.017]^Y} = \left[\frac{.16}{.08}\right]^X = [2]^X$$

Now put in values for Rates:

$$\frac{R_3}{R_2} = \frac{2.2x10^{-4}}{1.1x10^{-4}} = 2 = [2]^x$$

and guess what X is

(a) X = 0 (b) X = 1 (c) X = 2 (d) X = 3

For the Reaction $S_2O_8^{2-}(aq) + 3 I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_3^{-}(aq)$

the rate law : Rate = k $[S_2O_8^{2-}][I^-]$ the order : X + Y = 1 + 1 = 2

and rate constant :

 $R_1 = 2.2 \times 10^{-4} = k (0.08)(0.034)$ k = 8.0882353 x 10⁻² Really ?

Problem 14.26 page 566

$S_2O_8^{2-}(aq) + 3I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_3^{-}(aq)$

Exp	$[S_2O_8]$	[I-]	Rate(M/s)
1	0.018	0.036	2.6 x 10 ⁻⁶
2	0.027	0.036	3.9 x 10 ⁻⁶
3	0.036	0.054	7.8 x 10 ⁻⁶
4	0.050	0.072	1.4 x 10 ⁻⁵

How is this problem different from the previous example ?

Additional Topics:

- I. Integrated form of rate equation
- II. Half-life
- III. Temperature
- IV. Catalyst

For 1st Order Reactions: $A \rightarrow B$ Instead of Rate = $-\frac{\Delta[A]}{\Delta t} = k[A]$

use
$$Rate = -\frac{d[A]}{dt} = k[A]$$

or
$$-\frac{d[A]}{[A]} = k dt$$

Integrated form of rate equation

$$-\int_{\text{initial}}^{\text{final}} \frac{d[A]}{[A]} = \int_0^t \mathbf{k} dt$$

[A]₀ = initial concentration at time t = 0[A] = concentration at time t

$$\ln \frac{\left[A\right]_0}{\left[A\right]} = k t$$

II. Reaction Rates & Half-Life

The half-life $(t_{1/2})$ of a reaction is the TIME required for the concentration of a reactant to decrease to one half its initial value

Half-life is defined as the time required for one-half of a reactant to react.

• Because [A] at $t_{1/2}$ is one-half of the original [A], $[A]_t = 0.5 [A]_0.$ The concentration of A at $t_{1/2}$ is one half the original concentration $[A]_t = 0.5 [A]_0$

[A] is one-half of the original [A]_o at $t_{1/2} = 13,500$ sec

The Concentration [A] is one-half of that at two half lives {28,000 sec

Consider the Reaction $2 H_2O_2(aq) \rightarrow H_2O(liq) + O_2(g)$

What will the concentration of Hydrogen Peroxide be after 3 half-lives ? The half-life $(t_{1/2})$ of the decomposition of Hydrogen Peroxide is 654 mins

If the initial concentration of H_2O_2 is 0.020 M

How long will it take for the concentration of Hydrogen Peroxide to drop to 0.010 ? 654 mins = one half-life What will the concentration of Hydrogen Peroxide be after 3 half-lives?

All radioactive decay is 1st order

$$\ln \frac{\left[A\right]_0}{\left[A\right]} = k t$$

At $t_{1/2}$ concentration is $\frac{1}{2}$ initial

$$\ln \frac{[A]_{0}}{[\frac{1}{2}A]_{0}} = k t_{1/2}$$

 $\ln 2 = k t_{1/2}$

III. Temperature and Rate

Rates of reactions are affected by

- 1. concentration
- 2. and temperature.

Since the rate law has no temperature term in

it, the rate constant must depend on

temperature.

Temperature and Rate

Rule of Thumb for Reaction Rates & Temperature

Ten degree increase in temperature *Doubles* Rate of Reaction

Energy of Activation

- Molecules must posses a minimum amount of energy to react. Why?
- In order to form products, bonds must be broken in the reactants.
- Bond breakage requires energy.

Activation Energy

a ball cannot get over a hill if it does not roll up the hill with enough energy

Activation Energy

- In other words, there is a minimum amount of energy required for reaction: the activation energy, E_a .
- a reaction cannot occur unless the molecules possess sufficient energy to get over the activation energy barrier.

Energy of Activation E_a

the minimum energy required to initiate a chemical reaction.

Figure 14.15.

Reaction pathway Copyright © 2006 Pearson Prentice Hall, Inc.

Reaction pathway

Copyright © 2006 Pearson Prentice Hall, Inc.

Reaction pathway

Copyright © 2006 Pearson Prentice Hall, Inc.

Consider the reaction $A \rightarrow D$

(a) What is the value of E_a ?

(b) Is the reaction exothermic, or endothermic?

Is this an Endo or Exo Thermic Process ?

Reaction Rates and Catalysis

Increases Rate Takes Part in Reaction Is not consumed

CATALÝSTS

- A catalyst is a substance that increases the rate of a reaction without being consumed in the reaction.
- Catalysts change the mechanism by which the process occurs.
- Enzymes are catalysts in biological systems

Homogeneous catalyst: Exists in the SAME phase as the reactants.
Heterogeneous catalyst: Exists in DIFFERENT phase to the reactants.

Copyright © 2006 Pearson Prentice Hall, Inc.

Catalysts increase the rate of a reaction by decreasing the activation energy of the reaction.

CATALYSTS

Reaction pathway

PART II Mechanism

How does the reaction go from Reactants to Products

Reaction Mechanisms

The sequence of events that describes the actual process by which reactants become products is called the reaction mechanism.

Reaction Mechanisms

- Reactions may occur all at once or through several discrete steps.
- Each of these processes is known as an elementary reaction or elementary process.
The Collision Model

- In a chemical reaction, bonds are broken and new bonds are formed.
- Molecules can only react if they collide with each other.

The Collision Model

Furthermore, molecules must collide with the correct orientation and with enough energy to cause bond breakage and formation.

Collision Theory

- 1. molecules MUST collide
- 2. collide with sufficient energy. *
- 3. correctly oriented molecules
- *Activation Energy (E_a) : The energy barrier that must be surmounted before reactants can be converted to products.

Activation Energy

The Collision Theory

- Not all collisions lead to products.
- In order for reaction to occur the reactant molecules must collide in the correct orientation and with enough energy to form products.
- The higher the temperature, the more energy available to the molecules and the faster the rate.

Collision Theory

The fraction of collisions having correct orientation is called the *steric factor*, *p*.

• The fraction of collisions leading to product is further reduced by an orientation requirement.

The Orientation Factor

(b) Ineffective collision

REACTION MECHANISMS

Most Chemical Reactions DO NOT Occur In A Single Step

Chemical Equations Normally Represent the OVERALL Reaction Not the Series of INDIVIDUAL Steps By Which The Reaction Actually Occurs

HOW DOES

OZONE "turn into" OXYGEN ?

$2 O_3 ----???? \rightarrow 3 O_2$

What is "BETWEEN" Reactants and Products

HOW DOES

The reaction of Hydrogen with Iodine monochloride form Hydrogen Chloride and Iodine ?

 $H_{2}(g) + Cl_{2}(g) - \cdots ??? \rightarrow HCl(g) + I_{2}(g)$

What Happens BETWEEN Reactants & Products ?

REACTION MECHANISM

The SEQUENCE Of Reaction STEPS That Defines The PATHWAY From Reactants To Products

ELEMENT&RY STEPS

- •Single steps in a mechanism are called <u>elementary steps</u> (reactions).
- •An <u>elementary step</u> describes the behavior of individual molecules.
- •An <u>overall reaction</u> describes the reaction stoichiometry.

Terms You Need To Know

- **Molecularity:** is the number of molecules (or atoms) on the reactant side of the chemical equation.
- **Unimolecular Reactions:** Single reactant molecule.
- **Bimolecular Reactions:**Two reactant molecules.
- **Termolecular:** Three reactant molecules.

Rate Laws and Reaction Mechanisms

- Rate law for an **overall reaction** MUST be determined **experimentally**.
- Rate law for **elementary steps** follows from its molecularity.
- Elementary steps: Processes in a chemical reaction that occur in a single event or step

Rate Laws and Reaction Mechanisms

- The <u>rate law</u> of each <u>elementary step</u> follows its <u>molecularity.</u>
- The <u>overall reaction</u> is a sequence of elementary steps called the <u>reaction</u> <u>mechanism.</u>

Rate Laws and Reaction Mechanisms

Therefore, the experimentally observed <u>rate</u> <u>law</u> for an <u>overall reaction</u> must depend on the <u>reaction mechanism</u>.

"How" does ozone "turn into" oxygen?

$2 O_3 \quad -??? \rightarrow \quad 3 O_2$

It has been proposed that the mechanism of ozone into O_2 proceeds by a two-step :

 $O_3(g) \longrightarrow O_2(g) + O(g)$ $O_3(g) + O(g) \longrightarrow 2 O_2(g)$

- (a) Describe the molecularity of each elementary reaction in this mechanism.
- (b) Write the equation for the overall reaction
- (c) Identify the intermediate(s).

SAMPLE EXERCISE 14.14 Determining the Rate Law

For the decomposition of nitrous oxide, N₂O $N_2O(g) \longrightarrow N_2(g) + O(g)$ (slow) $N_2O(g) + O(g) \longrightarrow N_2(g) + O_2(g)$ (fast)

(a) Write the equation for the overall reaction.(b) Write the rate law for the overall reaction.

Ozone reacts with nitrogen dioxide to produce dinitrogen pentoxide and oxygen:

The reaction is believed to occur in two steps $O_3(g) + NO_2(g) \longrightarrow NO_3(g) + O_2(g)$ $NO_3(g) + NO_2(g) \longrightarrow N_2O_5(g)$

- 1. Write the overall reaction
- 2. Is the proposed mechanism possible ?
- 3. Identify the intermediate(s) ?

NO catalyzes the decomposition of N_2O by the following mechanism

NO (g) + N₂O (g) \rightarrow N₂ + NO₂ (g) 2 NO₂(g) \rightarrow 2 NO (g) + O₂ (g)

- (a) Write the balanced equation for the reaction
- (b) Why is NO considered a catalyst and not an intermediate ?
- (c) Identify intermediates in mechanism