

Syllabus – Fall 2014

Department:	Industrial Engineering			
Course Number/Section:	INEN 2301 -01			
Course Title:	Applications of Quantitative Methods			
Professor:	Ryan Underdown Cheery Engineering Building Room 220. Office phone: 880 8815, Ryan.underdown@lamar.edu Office hours: MTWTh 1:30- 3:30			

Course Description

Quantitative Methods: Introduction and applications of linear algebra, probability and statistics, and differential calculus. Not open to students majoring in engineering.

Prerequisites

MATH 1314.

Required/Optional Texts and/or Course Materials

- College mathematics for the managerial, life, and social sciences, S.T. Tan Sixth Edition, 2005, ISBN: 0-534-46530-7
- Statistics for Management and Economics, 9th Edition, Gerald Keller, South-Western Cengage, ISBN-10: 0538477490 ISBN-13: 9780538477499

Course Outcomes

Learning Outcomes:

- Students will have a working knowledge of linear equations and linear programming
- Students will be able to conduct statistical analysis of experimental results using current software
- Students will have a working knowledge of probability concepts

Core Curriculum Outcomes:

- Critical Thinking Skills: Students are able to explain the importance of methodical data collection and reducing variation. Students are able to set up statistical experiments and analyze the results for the purpose of making decisions in an industrial business environment.
- Communication Skills: Students write an extensive technical report, an executive summary and make an oral presentation or video production describing the performance of an organization.
- Empirical and Quantitative Skills: Students are able to set up and calculate linear equations and probability models. Students are able calculate results in a statistical experiment including measures of centrality, discrete and continuous variables, methods of estimation and hypothesis testing.

Policies

Disability accommodation: It is the policy of Lamar University to accommodate students with disabilities, pursuant to federal and state law, and the University's commitment to equal educational opportunities. It is the student's responsibility to register with Lamar's Disability Support Services (880-8347) as quickly as possible. Any student who feels s/he may need an accommodation based on the impact of a disability should contact the professor directly during the first week of the course.

Academic Honesty: Lamar University students will not cheat, lie, plagiarize, or tolerate those who do. Academic dishonesty will not be tolerated on any course assignments. **Should the student be found responsible for a dishonest incident, the course instructor will assign a reasonable penalty, which may include failure of the course.** If the student does not consent to the findings and/or penalty, the student must file an appeal with the department chairperson within five days, as specified in the student handbook (available at <u>www.my.lamar.edu</u>).

Attendance Policy: Attendance is expected at every class period unless pre-approval is obtained or circumstances preclude obtaining pre-approval. Online courses will have discussions that students will need to engage in order to obtain their grade points.

Drop: It is the student's responsibility to make sure that s/he is officially enrolled in this course. If, at any point, the student decides to not participate in this course, it is her/his responsibility to officially drop or withdraw from enrollment. Failure to do so may result in a failing grade. Drops after the course begins may carry financial penalty in that full reimbursement may not be possible.

Grading and Evaluation

Assignments:

- *Homework assessments*: The student will have assignments on blackboard throughout the semester. These assignments will prepare the student for the test and will review the contents of the textbooks. These assignments will give feedback immediately. They can be tried as many times as the student want and will not be part of the grade.
- *Final Project*: The analysis of the performance of a corporation based on numerical and nonnumerical analysis oriented to develop the capacity to analyze and synthesize a complex situation. Three deliverables are expected: an extensive report, an executive summary and an oral presentation of 7 to 10 minutes.
- *Tests:* There are three tests in this course. Tests will cover the course materials including numerical problems, hypothetical situations to value the non-numerical aspects of decision making, including ethical values, and the capacity to analyze and synthesize complex situations by applying critical thinking.

Grading scale:

Activity	Weight
Test 1,2, 3 (20% each)	60%
Project	30%
Quizzes, Homework, discussions	10%
TOTAL	100 %

Total	I etter grade granted		
points			
X>= 90	А		
80<=X<90	В		
70<=X<80	С		
60<=X<70	D		
Others	F/Q/W		

The Policy for making up missed course work (including examinations): Missed or late course work can only be made up if pre-approval is obtained. Otherwise, a grade of zero is assigned for the missed work.

Course Outline

Class #	Topics - Planned
1	Intro to course, Intro to Linear Programming
2	Intro to Linear Equations
3	Linear problems
4	Ch4: Numerical Descriptive Techniques
5	Ch4: Problems
6	Work Problem 4.65 as a class
7	Ch5: Data Collection and Sampling
8	Ch6: Probability
9	Ch6: Probability
10	Test 1 at 7:00 PM CST
11	Ch6: Problems
12	Ch6: Problems
13	Ch6: Problems, Ch7: Random Variables and Discrete Probability Distributions
14	Ch7: Random Variables and Discrete Probability Distributions
15	Ch7: Problems
16	Ch8: Problems
17	Test 2 Review
18	Test 2 at 7:00 PM CST
19	Ch9: Sampling Distributions
20	Ch9: Sampling Distributions
21	Ch9: Problems
22	Ch10: Introduction to Estimation
23	Ch10: Introduction to Estimation
24	Ch10: Problems
25	Ch11: Introduction to Hypothesis Testing

26	Ch11: Introduction to Hypothesis Testing
27	Ch11: Problems
28	Ch11: Problems
29	Test 3 Review
30	Test 3 at 7:00 PM CST

Week	Торіс	Student learning outcomes	Core curriculum outcomes	Required readings	Discussion	Assignments
1	Linear programming	Students will be able to identify, create and solve linear programming problems	Critical thinking: Students will be able to explain the importance of linear programming. Empirical and Quantitative Skills: Students will be able to use linear programming in real life situations.	Tan, Ch1, 2	How is linear programming used in real life?	Quizzes, Homework and discussion
2	Linear equations	Students will be able to identify, create and solve linear equations	Critical thinking: Students will be able to explain the importance of linear equations. Empirical and Quantitative Skills: Students will be able to use linear equations in real life situations.	Tan, Ch3, 4	How are linear equations developed in real life situations?	Quizzes, Homework and discussion
3	Numerical Descriptive Techniques	Students will be able to analyze data using basic descriptive techniques	Empirical and Quantitative Skills: Students will be able to compute measures of central location, coefficient of determination, coefficient of correlation	Keller, Ch4	What is the best measure of variation to make decisions of consistency	Quizzes, Homework and discussion
4	Data Collection and Sampling	Students will be able to collect data for an empirical study	Empirical and Quantitative Skills: Students will be able to select a data collection approach for given situations	Keller, Ch5	What data collection approach is best suited for a given real life situation?	Quizzes, Homework and discussion
5	Probability	Students will be able to calculate basic probability	Empirical and Quantitative Skills: Students will be able to calculate basic probability Critical thinking: Students will be able to compute and apply basic probability to real life situations	Keller, Ch6	Why is probability important in increasing productivity?	Quizzes, Homework and discussion

6	Random	Students will	Empirical and Quantitative	Keller, Ch7	How can marginal	Quizzes,
	Variables and	understand the laws	Skills: Students will be able to		probabilities be	Homework and
	Discrete	of expected value	compute and apply marginal		used to make	discussion
	Probability	and marginal	probabilities.		decisions in real life	
	Distributions	probabilities			situations	
7	Continuous	Students will be	Critical Thinking Skills:	Keller, Ch8	Where are	Quizzes,
	Probability	able to recognize	students can recognize and		continuous	Homework and
	Distributions	and use continuous	apply continuous probability		probability	discussion
		probability	distributions		distributions used	
		distributions			in real life?	
8	Sampling	Students will be	Empirical and Quantitative	Keller, Ch9	What situations will	Quizzes,
	Distributions	able to use a	Skills: Students make extensive		sampling	Homework and
		sampling	use of sampling distribution for		distributions be	discussion
		distribution for	inference		used to make	
		inference			decisions in real	
					life?	
9	Introduction to	Students will be	Critical Thinking Skills:	Keller,	When are interval	Quizzes,
	Estimation	able to use point	Students are able to interpret	Ch10	estimators the most	Homework and
		and interval	interval estimators		desired method of	discussion
		estimators			analysis?	
10	Introduction to	Students will be	Critical Thinking Skills:	Keller,	When should a one	Quizzes,
	Hypothesis	able to identify and	Students are able to set up a	Ch11	tailed test be used	Homework and
	Testing	compute tests of	test of hypothesis and interpret		and why?	discussion
		hypothesis	results, Empirical and			
			Quantitative Skills: Students			
			can compute test statistics			